

WORLD ENGINEERS CONVENTION

20 - 22 NOVEMBER | MELBOURNE, AUSTRALIA

Over 3-days you will have access to **over 580 presentations** including from internationally recognised speakers:

Prof. Carlo Ratti

Director, Senseable City Lab, MIT and Founding Partner, Carlo Ratti Associati ITALY

Meredith Westafer

Senior Industrial Engineer, Tesla USA

Dr Alan Finkel AO

Australia's Chief Scientist

Dr Collette Burke

Victorian Chief Engineer/Office of Projects Victoria & Exner Group

REGISTER NOW

WEC2019.ORG.AU

WELCOME MESSAGE

WELCOME TO MELBOURNE, AUSTRALIA AND THE 22ND INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS

We are very proud to be organising ICCM22 and we trust you will have an outstanding experience at the conference and during your stay in Melbourne and Australia.

ICCM22 continues the 44 year history of the International Conferences on Composite Materials, which commenced in 1975. This is the second time an ICCM has been held in Australia, with the first conference (ICCM11) held in Queensland in 1997. ICCM22 is proudly brought to you by the Australian Composites Structures Society, which is a professional society of Engineers Australia.

The theme of ICCM22 is 'Advanced Composites: Research to Impact' with the overall objective of exploring the latest research into composites and how the materials will be used in the future for applications including aerospace, construction, wind energy and automotive.

The scientific program of ICCM22 contains about 1513 presentations with the authors coming from over 50 countries representing the three ICCM world regions. Delegates from all parts of the composites sector, including universities, research institutions, government agencies, material suppliers, manufacturers and other industry, are attending ICCM22. Such diversity will ensure a vibrant, engaging and multifaceted conference. We are grateful to all authors for their outstanding contributions to the ICCM22 scientific program, which we believe is first rate.

The full ICCM22 program is printed in this book along with helpful information, including the locations of the session rooms in the Melbourne Convention and Exhibition Centre, Exhibition display area, locations for lunch and breaks, and details about the conference sponsors.

The ICCM22 conference proceedings contain the abstract, full paper or PowerPoint slides for presentations. The proceedings also contain the poster for poster presentations. You can easily access the proceedings via the ICCM22 website

(www.iccm.com) or the ICCM22 App. This program booklet is also accessible via the website and App.

We hope you greatly enjoy the many events and technical tours planned throughout ICCM22, all of which are described in this program. Conference updates on events and practical matters will be issued throughout the program via electronic notifications through the website and Conference app. Also remember to check the electronic notice boards in front of each session room for last minute, unavoidable changes to the program. If you need any assistance during the conference then please do not hesitate to contact the ICCM22 secretariat or us for help. Assistants will be present in all session rooms.

We sincerely thank Engineers Australia, MCI, the Local Organising Committee and the International Scientific Committee and student volunteers for their outstanding work; without which the conference would not be possible. Once again, welcome to Melbourne Australia and enjoy ICCM22.

CONTENTS

WELCOME MESSAGE	2
VENUE OVERVIEW	6
GENERAL INFORMATION	8
SOCIAL PROGRAM	10
SPONSORS	11
EXHIBITION	22
COMMITTEE LISTS	25
SCIENTIFIC PROGRAM CODES	28
SCALA AND PLENARY LECTURES	30
KEYNOTE LECTURES	32
SCIENTIFIC PROGRAM	_ 34
POSTER PROGRAM	95

CONFERENCE CHAIRS

Adrian Mouritz

Chun Wang

Bronwyn Fox

Research Program

Building on our strong collaborations between industry and university partners ATLAS will train urgently needed commercially focused researchers specialising in lightweight multi-material structures obtained through advanced, agile and digital manufacturing technologies.

ATLAS comprises an integrated research program encompassing four themes as outlined below:

LIGHTWEIGHT MATERIALS _

Research underpinning the development and efficient processing of high-performance lightweight materials like carbon-fibre composites and highly formable metal alloys for the manufacture of next generation lightweight components and assemblies by Australian manufacturers.

INTEGRATED MULTI-MATERIAL STRUCTURES ___

Design and demonstration of smart integrated multi-material structures such as those with gradient physical properties for controlled crush or imbedded functional features like the capacity to store electrical energy for future mobility solutions.

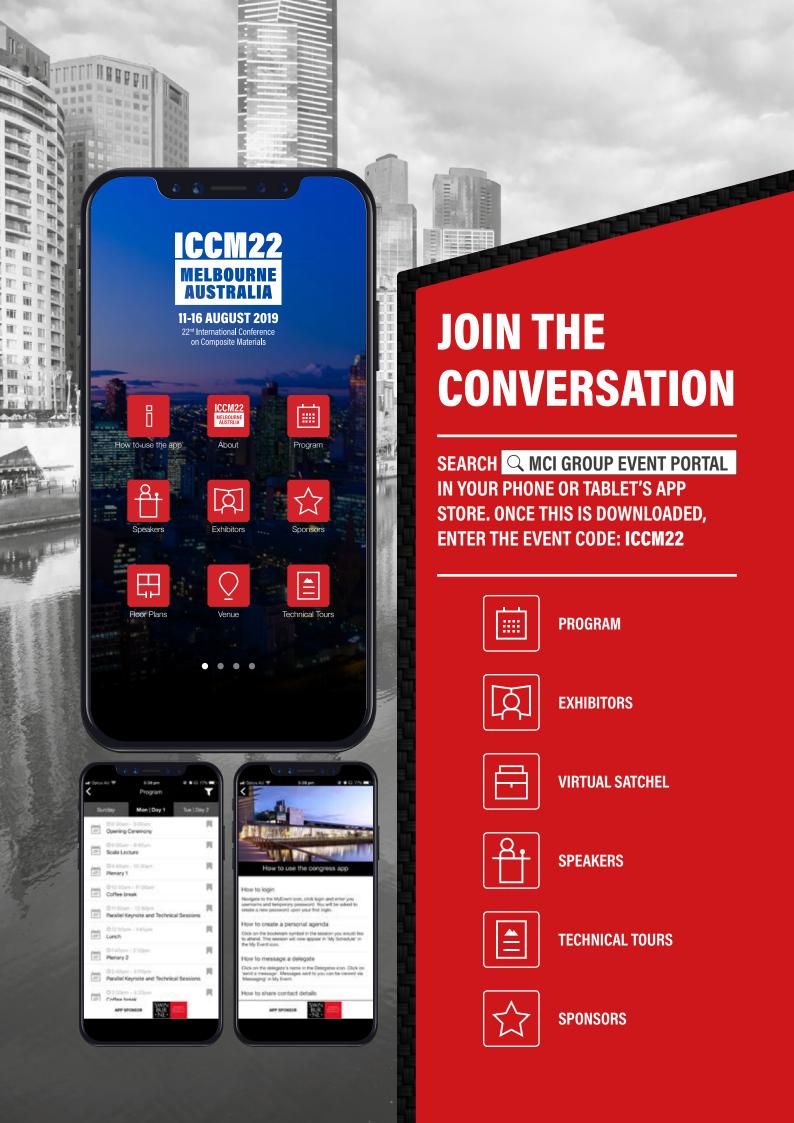
DESIGN AND ADVANCED MANUFACTURING

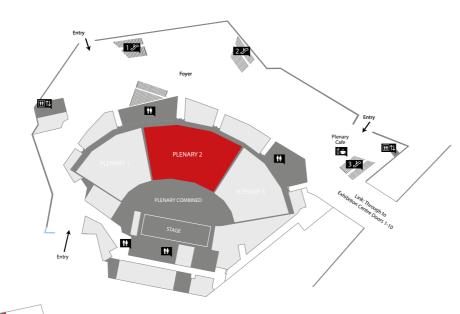
Advancement of agile and digital manufacturing technologies such as additive manufacturing, flexible roll forming technologies and multi-material joining techniques to enable local manufacturers to efficiently produce high value products for local and international markets.

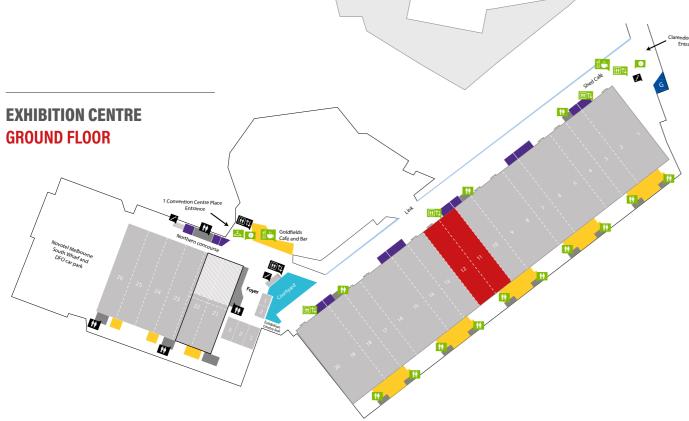
WHOLE OF LIFE __ ASSESSMENT

Validating the whole of life economic, environmental and societal benefits of next generation lightweight multi-material structures through quantitative life cycle assessments and the development of decision making tools to help guide design choices.

Our Partners







CONVENTION CENTRE GROUND FLOOR

SKYSCAN 1273 - High-Capacity 3D X-ray Microscopy

The SKYSCAN 1273 is Bruker's latest benchtop 3D X-ray microscope based on micro computed tomography (Micro-CT), a non-destructive imaging technology pioneered by Bruker. The SKYSCAN 1273 sets a new standard for non-destructive testing (NDT) with benchtop instruments, providing a performance previously only achieved by floor standing systems. Samples with up to 500 mm length, 300 mm diameter, and a maximum

weight of 20 kg can be inspected. The combination of a higherenergy X-ray source running at higher power and a large format flat-panel detector with ultimate sensitivity and readout speed provides excellent image quality in just a few seconds.

Features:

- 40-130kV maintenance-free X-ray source for low cost of ownership
- 8-position automatic filter changer for automatic energy selection
- GPU-acceleration for fast 3D reconstructions
- Offset scanning with automatic stitching of oversized images
- Best image quality of planar structures thanks to helical scanning and exact reconstruction
- Up to 4x faster scanning of objects with high aspect ratio thanks to HART Plus

SPECTRO ARCOS - ICP-OES Analyser

The SPECTRO ARCOS ICP-OES excels in industrial and academic applications for the most advanced elemental analysis of metals, chemicals, petrochemicals, and other materials. Its unique new MultiView plasma interface option provides truly uncompromising axial-view and radial-view plasma observation in a single instrument. Its innovative, exclusive solid-state generator offers the industry's highest power in an energy-efficient, futureproof package.

SPECTRO XEPOS - ED-XRF Spectrometers

The new SPECTRO XEPOS spectrometer represents a quantum leap in energy dispersive X-ray fluorescence technology. It provides breakthrough advances in multielemental analysis of major, minor, and trace element concentrations. New developments in excitation and detection deliver outstanding sensitivity and detection limits — yielding remarkable gains in precision and accuracy.

Contact DKSH Australia for more information

in https://au.linkedin.com/company/dksh-scientific-instrumentation

GENERAL INFORMATION

GENERAL INFORMATION

REGISTRATION DESK OPENING TIMES

The registration desk will be located in the exhibition concourse foyer and will be open during the following times:

DATE	TIME
Sunday 11 August	1400-1800
Monday 12 August	0700-2100
Tuesday 13 August	0700-1830
Wednesday 14 August	0700-1830
Thursday 15 August	0700-1830
Friday 16 August	0700-1530

SPEAKER PREPARATION ROOM

A speaker preparation room is available for all chairpersons and speakers during the conference. This is a room specifically reserved for speakers and chairpersons to work on, load and practice their presentations/chairing duties or simply just to relax and de-stress prior to their program responsibilities.

The speaker preparation room is located in Meeting Room 220 at the Melbourne Convention and Exhibition Centre and will be staffed by professional AV technicians and will be open during the following times:

DATE	TIME
Monday 12 August	0700-1800
Tuesday 13 August	0700-1800
Wednesday 14 August	0700-1600
Thursday 15 August	0700-1800
Friday 16 August	0700-1500

EXHIBITION OPENING TIMES

The ICCM22 exhibition will be in exhibition bays 11/12, accessible via door 6.

DATE	TIME
Monday 12 August	1030-2100
Tuesday 13 August	1000-1830
Wednesday 14 August	1000–1630
Thursday 15 August	1000–1830
Friday 16 August	1000–1530

INTERNET ACCESS

Most Australian hotels offer wired or wireless highspeed internet access in their guest rooms. Most hotels will also have a business centre with available computers and printers for their guests to use.

While onsite at the conference a complimentary wifi service is available to all delegates:

Network Name: ICCM22 Password: Composites

There is no other Business Lounge facility provided at the conference or at the Melbourne Convention and Exhibition Centre.

CATERING AND SPECIAL DIETS

Morning and afternoon tea, as well as lunches are being served for all delegates within the exhibition.

A special diet requirement is when a person chooses to omit certain foods or food groups from their diet on religious, ethical, moral or medical grounds. Provision will be made for food intolerances, halal and kosher requests, as well as vegetarian/vegan requests.

If you have confirmed a special dietary requirement at time of registration, there will be a separate special dietary requirements table available during the catering breaks.

SMOKING

There is no smoking indoors or within enclosed public areas in Melbourne. The Melbourne Convention and Exhibition Centre is also a smoke free environment.

LANGUAGE

The official language of the 22nd International Conference on Composite Materials is English.

INSURANCE

The 22nd International Conference on Composite Materials is unable to accept responsibility for accidents or damage to the private property of participants. Please ensure that you do not leave portable and valuable pieces of equipment unattended anywhere, and that you make your own arrangements for health, travel, general and other insurance.

PROCEEDINGS

All accepted presentations will be included in the official ICCM proceedings. The proceedings will be available to registered ICCM22 delegates via the official website and conference app.

CPD HOURS

Attendance at the 22nd International Conference on Composite Materials entitles you to earn professional development hours from Engineers Australia. We recommend visiting the official conference website, specifically the conference program page for more details.

FIRST AID

The conference will have professional first aid assistance onsite – see staff at the registration desk for information.

EMERGENCY

In an emergency, dial 000 for fire, police, and ambulance. The nearest public hospitals are:

Alfred Hospital

55 Commercial Road, Melbourne T: +61 3 9076 2000 www.alfredhealth.org.au

Royal Melbourne Hospital

300 Grattan Street, Parkville T: +61 3 9342 7000 www.thermh.org.au In case you are not feeling well please find the nearest GP clinics. Fees may apply to any medical treatment.

Freshwater Place Wellness Medical Practice

Suite 13-15/1 Freshwater Place, Southbank VIC 3006 T: +61 3 9926 3646

www.fpwmp.com.au

My Clinic Southbank

63 Power Street, Southbank, 3006 T: +61 3 9131 4210

www.myclinicgroup.com.au/our-clinics/myclinic-southbank

SOCIAL PROGRAM

WELCOME RECEPTION - MONDAY 12 AUGUST 2019

Time: 1845–2100

Location: Exhibition Bays 11 and 12, Melbourne Convention and Exhibition Centre (MCEC)

Dress Code: Business Casual

Sponsor:

STUDENT PARTY - TUESDAY 13 AUGUST 2019

Time: 1900–2300

Location: Wunderbar – Munich South Wharf 45 South Wharf Promenade, South Wharf VIC 3006

Dress Code: Business Casual

Please make your way to Munich South Wharf or be at the conference registration desk at 1845 to be escorted to the student party venue.

Sponsor:

ICCM22 BANQUET - THURSDAY 15 AUGUST 2019

Time: 1845-2230

Location: Melbourne Room, Melbourne Convention and

Exhibition Centre (MCEC)

Dress Code: Semi Formal/ Business "Jacket"

Sponsor:

SPONSORS

DESTINATION SPONSOR

ICCM22 PARTNER

PRINCIPAL PARTNER

MAJOR PARTNER

ASSOCIATE PARTNER

SUPPORTING PARTNER

SPONSORS

DESTINATION SPONSOR

Holly Row

T: +61 3 9002 2395

E: holly.row@melbournecb.com.au

W: melbournecb.com.au

Melbourne Convention Bureau

With its vibrant culture, multicultural population, temperate climate and outstanding quality of life, Melbourne is an ideal destination for delegates. The city is compact, convenient and easy to navigate inviting you to discover its creative culture through all its elements; from art and fashion, to the sports scene and renowned diverse gastronomy.

The city is home to historical and modern architecture, hidden laneways, beautiful green spaces, art galleries, music venues and a wealth of attractions providing unlimited choices for exploration.

Boasting a myriad of restaurants, bars, hatted dining rooms and coffee shops, Melbourne is a foodie paradise for all visitors and locals alike.

Once your conference day is over, be prepared to feel the city in every corner and on the countless immersive experiences on offer.

For more information and ideas, visit melbourne.org

ICCM22 PARTNER

Molly Lachance

T: +1 703 588 0198 E: Collaborate@us.af.mil W: www.afresearchlab.com

AFOSR

The Air Force Office of Scientific Research (AFOSR) is an integral part of the Air Force Research Laboratory (AFRL).

As its basic research manager, AFOSR provides grants and contracts to universities worldwide, small businesses in the U.S., and various Technology Directorates of AFRL. All support basic research activities with potential applications to the future Air Force. AFOSR is a global organization with branches located in Arlington, Virginia; London, UK; Tokyo, Japan; and Santiago, Chile.

We believe basic research is the foundation of all science and engineering discovery and progress and spawns the inventions and concepts - many of which are revolutionary.

PRINCIPAL PARTNER

B00TH 17 & 18

Raineesh Shinde

T: +91 9890 025 140

E: rajneesh.shinde@altair.com

W: altair-anz.com

Altair

Altair (Nasdag: ALTR) is a global technology company that provides software and cloud solutions in the areas of product development, high-performance computing (HPC), and data intelligence. Altair enables organizations across broad industry segments to compete more effectively in a connected world while creating a more sustainable future.

We are a leading provider of enterprise-class engineering software enabling innovation, reduced development times, and lower costs through the entire product lifecycle from concept design to in-service operation.

PRINCIPAL PARTNER

B00TH 27 & 28

Melanie de Git

T: +61 423 829 505

E: melanie.degit@boeing.com

W: boeing.com.au

Boeing

Boeing's presence in Australia is the company's largest footprint outside the United States, with more than 3,000 employees in 38 locations. Boeing has the broadest portfolio in Australian aerospace, with its employees and an extensive supply chain supporting our advanced manufacturing of commercial aircraft composite components, defence systems design and development, modeling and simulation, research and development, support and training, and unmanned systems.

MAJOR PARTNER

B00TH 19

Kingsley Edgar

T: +61 418 727 791

E: kingsley.edgar@mscsoftware.com

W: mscsoftware.com

MSC Software

MSC Software develops simulation software technology that enables engineers to validate and optimize their designs using virtual prototypes. Customers in almost every part of manufacturing use our software to complement, and in some cases even replace the physical prototype "build and test" process that has traditionally been used in product design.

As a trusted partner, MSC Software helps companies improve quality, save time and reduce costs associated with design and test of manufactured products. Our products accurately and reliably predict how products will behave in the real world to help engineers design more innovative products - quickly and cost effectively.

SPONSORS

MAJOR PARTNER

B00TH 20

Michael Wisnom

T: +44 1173 315 311

E: work-with-accis@bristol.ac.uk W: bristol.ac.uk/composites/

Bristol Composites Institute (ACCIS)

The NCC is a world-leading authority on composites

R&D, bringing together and developing the best minds and technologies, to solve the world's most complex engineering challenges. Bristol Composites Institute (ACCIS) is a world-leading institute for composites research and education that combines cutting-edge fundamental science with strong industrial links for exploitation and technology transfer

Bristol in the UK is THE place in the world for

composites R&D. Not only is it a hub for industries

leading the way in composites adoption it is home to

two world-leading composites partners - The National

Composites Centre and Bristol Composites Institute

ASSOCIATE PARTNER

B00TH 23

Cara Jordan

T: +61 405 770 731

E: atlas-innovation@rmit.edu.au W: atlas-innovation.com.au

Atlas Innovations

University of Bristol

(ACCIS).

Atlas aims to accelerate the transformation of Australia's automotive industry through new research capabilities in lightweight automotive structures design and manufacture.

ASSOCIATE PARTNER

B00TH 22

Derek Buckmaster

T: +61 3 5247 9247

E: derek.buckmaster@deakin.edu.au

W: carbonnexus.com.au

Deakin University - Carbon Nexus

Carbon Nexus is a globally unique open-access carbon fibre and composite research centre owned and operated by Deakin University. Located at the Geelong Waurn Ponds Campus, Carbon Nexus facilitates world-class innovation in carbon fibre and composite materials, researching all aspects of fibres and composites, scale-up, characterisation, applied analysis and advanced manufacturing concepts. The facility houses an industrial-scale carbon fibre Pilot Line complemented by a Research-Scale Line to enhance research efficiency and flexibility.

ASSOCIATE PARTNER

Harry Baxter

T: +61 3 9214 4447

E: harry.baxter@dmtc.com.au

W: dmtc.com.au

DMTC Limited

DMTC works collaboratively with many successful and innovative Australian industry, research and government agencies to advance technologies in areas identified as priorities by Defence. Our focus is on delivering enhanced defence and national security capabilities, and strengthening Australian industrial capacity.

Our proven approach delivers outstanding achievements in industrially-relevant research and adoption and commercialisation of technology, underpinned by ISO:9001 accredited business processes.

ASSOCIATE PARTNER

B00TH 02

Wilhelm Rupertsberger

T: +43 6646 147 070

E: wilhelm.rupertsberger@fill.co.at

W: fill.co.at

Fill Gesellschaft m.b.H

Fill is a family owned company located in Austria. 850 employees are developing, manufacturing high tech production solutions for different markets.

From fiber to the finished part – Fill delivers systems from the preforming process through to NDI. If you are seeking the best solution, shape your future with Fill.

ASSOCIATE PARTNER

B00TH 01

Alexander Wiesner

T: +61 4377 652 310

E: alexander.wiesner@langzauner.att

W: langzauner.at

Langzauner GmbH

Langzauner is the leading expert in the development and production of hydraulic presses, automation solutions, special solutions and tailor-made concept solutions in the automotive, aerospace and sports industries.

Composite Presses, HP RTM Presses, Sandwich.Crush. Core Honeycomb, Thermoforming/Thermoplastic/ Thermoset, Laboratory Presses, Ski/Snowboard Press PCM-Prepreg Compression Molding, Sintering Press, Molding Presses, Multi Processes, Panel Presses, Hot Presses/Heating Presses, Laboratory Presses, Electric Spindle Presses.

17

B00TH 21

Andrew Gillen

T: +61 2 9641 2846 E: andrew.gillen@netzsch.com W: netzsch.com.au

NETZSCH Australia Pty Ltd

The Analyzing & Testing business unit of the NETZSCH Group (est. 1873, Germany) develops and manufactures a complete high-precision instrument line for thermal analysis and thermophysical properties measurement, as well as offering world class commercial testing services in our laboratories. Our instrumentation is employed for research, quality control and process control in the composites sector, the chemical industry and the areas of inorganics and building materials. Our innovative technological leadership and uncompromising quality standards make us one of the world's leading manufacturers in our trade.

ASSOCIATE PARTNER

B00TH 10

Alex Campbell

T: +61 3 9214 4932 **E:** aacampbell@swin.edu.au W: swinburne.edu.au

Swinburne University of Technology

Swinburne is a world-ranked university leading the way in innovation, industry engagement and social inclusion. Our education, research and industry partnerships create positive change for students, staff and the community.

At Swinburne, we're proud that our high-quality research meets the demands of society, government and industry, and aims to improve the way we live and build a sustainable future.

Five key areas of focus drive our research centres and institutes. They include: future manufacturing, sustainable futures, digital frontiers, personal and societal wellbeing, and inspirational science and technology. Our Manufacturing Futures Research Institute integrates advanced manufacturing in the global value chain.

ASSOCIATE PARTNER AND WELCOME RECEPTION SPONSOR

B00TH 04

Laura Hunt

T: +61 7 4631 2296 E: research@usq.edu.au W: Composites.usg.edu.au

University of Southern Queensland

University of Southern Queensland (USQ) has gained a reputation for pioneering research and development in engineered fibre composites. USQ prioritises R&D in advanced composite manufacturing, civil composites, smart materials, and geopolymer & concrete. USQ operates a dedicated industry test service for more than 1000 business clients across multiple sectors both nationally and internationally.

SUPPORTING PARTNER

B00TH 03

Gangadhara Prusty

T: +61 2 9385 5939 E: G.Prusty@unsw.edu.au

W: advanced-composites.unsw.edu.au

ARC Training Centre for Automated Manufacture of Advanced Composites (AMAC)

AMAC provides a platform for world-class Australian capability to create high-value, high-performance composites using high-rate, error-free processes.

The Training Centre lowers the barriers for Australian industry to access, engage, adopt and propagate automated composite manufacturing innovations.

SUPPORTING PARTNER

B00TH 24

Ashish Kumar

T: +61 2 8315 4419

E: ashish.kumar@anton-paar.com W: anton-paar.com/au-en/

Anton Paar Australia Pty. Ltd.

Anton Paar develops, produces and distributes highly accurate laboratory instruments and process measuring systems, and provides custom-tailored automation and robotic solutions.

It is the world leader in the measurement of density, concentration and CO2 and in the field of rheometry. Anton Paar GmbH is owned by the charitable Santner Foundation.

SUPPORTING PARTNER

B00TH 25

Prof. Priyan Mendis

T: +61 419 312 481

E: pamendis@unimelb.edu.au W: camph.eng.unimelb.edu.au/

ARC Centre for Advanced Manufacturing of Prefabricated Housing (CAMP.H), The University of Melbourne

The ARC Training Centre for Advanced Manufacturing of Prefabricated Housing (CAMP.H) is the centrepiece for collaborative and innovative prefabricated building research in Australia.

The centre aims to unlock the potential growth of Australia's prefabricated building industry by creating a co-operative training system between industry and universities leading to local employment growth and increased exports of prefabricated products and services.

SPONSORS

SUPPORTING PARTNER

Lee Harper

T: +44 115 951 3823

E: lee.harper@nottingham.ac.uk

W: cimcomp.ac.uk

CIMComp

The EPSRC Future Composites Manufacturing Research Hub was launched in January 2017, led by the University of Nottingham and Bristol and includes 11 other national spokes.

It is a £10.3m investment to expand the UK's research effort towards delivering a step change in the production of polymer matrix composites, whilst training the next generation of composite engineers

SUPPORTING PARTNER

B00TH 08

Lindsey Gadinski

T: +13 0253 36024

E: lindsey@super-cone.com

W: chinacone.com

CONE Technology

CONE Technology Group, located in US, Japan and China, is committed to bring Carbon Nanotubes (CNTs) into our life.

With the mass production capability of high quality CNTs, a variety of available CNT morphologies including aligned CNT forest, powder, fiber, and freestanding films will meet your needs.

SUPPORTING PARTNER

B00TH 12

Jenny Thistlethwaite

T: +61 408 761 177

E: jenny.thistlethwaite@dksh.com

W: direct.dksh.com.au/lab

DKSH Australia

DKSH Scientific Instrumentation, within Business Unit Technology, supplies a wide range of la-boratory instruments, scientific equipment, life science products and consumables, to laboratories in the government, research, university, contract analysis and industrial sectors. We also provide applications support and service across all the sectors.

The DKSH Scientific Instrumentation group offers products and services for Scientific Instrumenta-tion, Automation & Online Analysers, General Laboratory Equipment, Environmental & Clinical Diagnostic Kits, Consumables and Reagents.

SUPPORTING PARTNER AND ICCM22 BANQUET SPONSOR

Elsevier Materials Team

T: +44 1865 843 577 E: t.zou@elsevier.com W: elsevier.com

Elsevier

Elsevier is a global information analytics business that helps scientists and clinicians to find new answers, reshape human knowledge, and tackle the most urgent human crises. For 140 years, we have partnered with the research world to curate and verify scientific knowledge. Elsevier's materials science journals' programme is the largest publishing programme in materials science, which includes our flagship title Materials Today as well as over 60 specialty journals covering full spectrum of materials science. In composites field, we are proud to serve the community with our premium collection of 6 titles: Composites Science and Technology, Composites Part A and B, Composite Structures, Cement and Concrete Composites, and Composites Communications

SUPPORTING PARTNER

B00TH 13

Rajesh Jagmohan

T: +61 3 9720 3477

E: Rajesh_Jagmohan@Instron.com

W: instron.com.au/en-au/our-company/aboutus?region=Australia&lang=en-AU

Instron

Founded in 1946, Instron® is a recognized worldwide market leader in the materials testing industry.

Instron offers one of the largest product ranges in the industry, supplying systems and accessories from screw-driven electromechanical machines to servohydraulic fatigue, impact, rheology, through to structural testing rigs and crash simulation sleds.

SUPPORTING PARTNER

Nelly Baron

T: +06 46 39 19 16

E: baron@jeccomposites.com W: jeccomposites.com

JEC Group

JEC Asia 2019, the 3-day business & networking event dedicated to composites in Asia Pacific, will be held in Seoul on November 13-15, 2019 in parallel to eMove Asia.

Join composites key players gathering every year at JEC Asia to network and discover the endless possibilities of composites.

SPONSORS

SUPPORTING PARTNER

Academic Open Access Publishing since 1996

B00TH 14

MDPI Marketing Department

T: +86 10 6256 3691
E: comms-team@mdpi.com
W: mdpi.com

MDPI

MDPI is an academic open-access publisher with headquarters in Basel, Switzerland. MDPI publishes 202 peer-reviewed, scientific, open access journals.

All journals uphold a peer-reviewed, rapid, and rigorous publication process to publish your work under a CC BY license, in a fast and straightforward manner, and to reach a wide readership.

SUPPORTING PARTNER

B00TH 26

Carl de Koning

W: quickstep.com.au

T: +61 413 884 209 **E:** cdekoning@quickstep.com.au

Quickstep Holdings Limited

Quickstep Holdings Limited is Australia's largest independent aerospace-grade advanced composite manufacturer, operating from advanced manufacturing facilities at Bankstown, NSW and an R&D/ process development centre in Geelong, Victoria. Quickstep employs more than 240 people in Australia and is partnering with some of the world's largest aerospace/ defence organisations including Lockheed Martin, Northrop Grumman, Boeing Defense and BAE Systems, as well as Australian-based Marand Precision Engineering and Chemring Australia.

SUPPORTING PARTNER

B00TH 15

Pat Griffin

T: +61 414 446 050

E: patgriffin@rheologysolutions.com

W: rheologysolutions.com

Rheology Solutions Pty Ltd

Rheology Solutions was established in April, 1998 as a specialist sales and service organisation dedicated to the science of materials characterisation and are the exclusive Australian distributors for Thermo Scientific, Optical Control Systems, Sofraser and Schleibinger Gerate range of equipment and instrumentation.

Rheology Solutions has an established contract testing service and applications laboratory, equipped with a comprehensive range of rheology instruments to meet the requirements of materials characterisation testing. Seminars and application specific workshops are regularly offered and are designed to meet the needs of specific customer and industry applications.

SUPPORTING PARTNER AND ICCM22 WOMEN IN COMPOSITES LEADERSHIP FORUM SPONSOR

Adrian Mouritz

T: +61 3 9925 6269

E: adrian.mouritz@rmit.edu.au
W: rimit.edu.au/schools/engineering

RMIT University

RMIT is a global university of technology, design and enterprise. One of Australia's original tertiary institutions, RMIT University enjoys an international reputation for excellence in professional and vocational education, applied research, and engagement with the needs of industry and the community. RMIT's School of Engineering is renowned for its industry-relevant high-quality teaching and research, its globally competitive graduates and its international linkages. Our vision is to be recognised for innovative, industry-relevant teaching and research, and work-ready graduates

SUPPORTING PARTNER

Thermo Fisher SCIENTIFIC

B00TH 16

Customer Service

T: (Australia) 1300 735 292 (International) +61 3 9757 4486

E: AUinfo@thermofisher.com

W: thermofisher.com.au

Thermo Fisher Scientific

Thermo Fisher Scientific is the world leader in serving science, enabling customers to make the world healthier, cleaner and safer.

Our comprehensive range includes high-end analytical and process instrumentation, laboratory equipment, a complete range of consumables, chemicals and reagents as well as the service and support to optimise your results.

SUPPORTING PARTNER AND STUDENT PARTY SPONSOR

Trent Leggatt

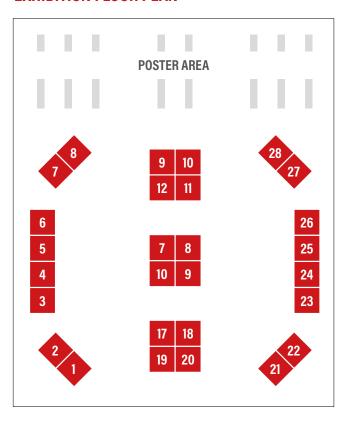
T: +61 3346 9976 E: coms@eait.uq.edu.au

W: uq.edu.au

The University of Queensland

Our ambition is to make a transformational impact on our region, and the world.

At UQ, we are developing new manufacturing methods and materials that provide solutions to the manufacturing and materials sector in a global economic context.


EXHIBITION

The exhibition will be located in the Exhibition Hall, Melbourne Convention and Exhibition Centre.

воотн	ORGANISATION
1	Langzauner GmbH
2	Fill Gesellschaft m.b.H.
3	ARC Training Centre for Automated Manufacture of Advanced Composites (AMAC)
4	University of Southern Queensland
5	ICCM23 Belfast
6	PerkinElmer
7	Blink Technology Australia
8	CONE Technology
9	TA Instruments
10	Swinburne University of Technology
11	Bruker Pty Ltd
12	DKSH Australia
13	Instron
14	MDPI
15	Rheology Solutions Pty Ltd
16	Thermo Fisher Scientific
17	Altair
18	Altair
19	MSC Software
20	University of Bristol
21	NETZSCH Australia Pty Ltd
22	Deakin University - Carbon Nexus
23	Atlas Innovations
24	Anton Paar Australia Pty. Ltd.

воотн	ORGANISATION
25	ARC Centre for Advanced Manufacturing of Prefabricated Housing (CAMP.H), The University of Melbourne
26	Quickstep Holdings Limited
27	Boeing
28	Boeing

EXHIBITION FLOOR PLAN

ARC Centre for Advanced Manufacturing of Prefabricated **Housing (ARC-CAMPH)**

"Unlocking the potential growth of Australia's prefabricated building industry through Research and Innovation"

Driven by industry, the ARC Training Centre for Advanced Manufacturing of Prefabricated Housing (CAMPH) is the centrepiece for collaborative, eco-friendly, prefabricated housing and buildings research in Australia, striving to deliver breakthrough product and process innovations that will enable the Australian housing industry to compete on a global stage.

The centre aims to unlock the potential growth of Australia's prefabricated building industry by creating a co-operative training system between industry and universities leading to local employment growth and increased exports of prefabricated products and services. The centre brings together a highly collaborative venture involving four universities and twelve industry partners. The four research programs being run in the centre are:

- 1. Innovation in design and enhancement of end-user experience
- 2. Developing advanced building systems and assembly techniques
- 3. Creating novel materials and composite structures
- 4. Supply chain and financing models

This initiative is a testament to the critical importance of this industry in Australia, and demonstrates the value that both industry and government place in collaborative, crossdisciplinary research. The centre will, in partnership with industry, prepare the next generation of industry professionals and researchers, and develop the materials, systems and design thinking that will transform the construction industry towards an advanced manufacturing future.

Website: https://camph.eng.unimelb.edu.au/

Contact: Prof. Priyan Mendis (Centre Director), pamendis@unimelb.edu.au

Dr. Kasun Shanaka Baduge (Centre Manager), kasun.kristombu@unimelb.edu.au

MELBOURNE WELCOMES YOU

Once your conference is done for the day, venture into our hidden spaces and iconic laneways to find an eclectic nightlife, tantalizing food and wine, a dynamic arts scene and more.

For more information and ideas, see

visitmelbourne.com

COMMITTEE LISTS

ICCM22 would like to thank our valued contributors; the ICCM Executive Council, the Local Organising Committee and the International Organising Committee.

ICCM EXECUTIVE COUNCIL

- · Leif Asp, Sweden President
- Woo-II Lee, Korea Senior Vice President
- Matthew Jevons, Germany Vice President, Region 1
- Jinsong Leng, China Vice President, Region 2
- Pascal Hubert, Canada Vice President, Region 3
- Nobuo Takeda, Japan Immediate Past President
- Christian Berggreen, Denmark Member
- · Chiara Bisagni, The Netherlands Member
- · Laifei Cheng, China Member
- Carlos Cimini, Brazil Member
- Martine Dube, Canada Member
- Stephanie Feih, Singapore Member
- Sayata Ghose, USA Member
- Suong Hoa, Canada Member
- Masaki Hojo, Japan Member
- Hyonny Kim, USA Member
- Stephan Lomov, Belgium Member
- Silvestre Pinho, UK Member
- Paul Smith, UK Member
- Ole Thomsen, UK Member
- Anoush Poursartip, Canada Member
- Murray Scott, Australia Member
- Michael Wisnom, UK Member
- Stephen Tsai, USA Member

LOCAL ORGANISING COMMITTEE

- Dr Mark Battley, University of Auckland
- Professor Andrew Chan, University of Tasmania
- Dr Venkata Chevali, University of Southern Queensland
- Professor Wing Kong Chiu, Monash University
- Associate Professor Paul Compston, Australian National University
- Dr Claudia Creighton, Deakin University
- Dr Ali Daliri, RMIT University
- Associate Professor Raj Das, RMIT University
- Dr Jayantha Epaarachchi, University of Southern Queensland
- Dan Eyckens, Deakin University
- Dr Joel Galos, RMIT University
- Professor Michelle Gee, RMIT University
- Associate Professor Rebecca Gravina, RMIT University
- Dr Nishar Hameed, Swinburne University of Technology

- Dr Michael Heitzmann, University of Queensland
- Professor Luke Henderson, Deakin University
- Dr Chris Howe, Boeing Research and Technology Australia
- Professor Xiao Hu, University of Western Australia
- Dr Everson Kandare, RMIT University
- Associate Professor Akbar Afaghi Khatibi, RMIT University
- Dr Nam Kim, University of Auckland
- Associate Professor Krishnan Jayaraman, University of Auckland
- Dr Mathew Joosten, Deakin University
- Dr Raj Ladani, RMIT University
- Professor Alan Lau, Swinburne University of Technology
- Professor Guoxing Lu, Swinburne University of Technology
- Dr Richard Lin, University of Auckland
- Associate Professor Jun Ma, University of South Australia
- Dr Sardar Malek, University of Technology Sydney
- Associate Professor Allan Manalo, University of Southern Queensland
- Professor Priyan Mendis, University of Melbourne
- Professor Evgeny Morozov, University of New South Wales (ADFA)
- Dr Minoo Naebe, Deakin University
- Professor Tran Ngo, University of Melbourne
- Dr Kate Nguyen, RMIT University
- Associate Professor Adrian Orifici, RMIT University
- Dr Garth Pearce, University of New South Wales
- Associate Professor Ganga Prusty, University of New South Wales
- Professor Peter Schubel, University of Southern Queensland
- Dr Nisa Silam, RMIT University
- Dr Nigel StJohn, Defence Science & Technology Group
- Professor Murray Scott, ACS Australia
- Professor Liyong Tong, University of Sydney
- Dr Jonathan Tran, RMIT University
- Professor Russell Varley, Deakin University
- Associate Professor Hao Wang, University of Southern Queensland
- Dr Shuying Wu, Macquarie University
- Professor Yang Xiang, University of Western Sydney
- Professor Lin Ye, University of Sydney
- Professor Tao Yu, University of Wollongong
- Dr Xuesen Zeng, University of Southern Queensland
- Dr Jin Zhang, Deakin University

INTERNATIONAL ORGANISING COMMITTEE

- Prof Suresh Advani, University of Delaware, USA
- Prof Malin Akermo, KTH Royal Institute of Technology, Sweden
- Prof Leif Asp, Chalmers University, Sweden
- Prof Janice Barton, University of Southampton, UK
- Dr Jeffrey W Baur, Air Force Research Laboratory, US
- Prof Christian Berggreen, TU Denmark, Denmark
- Prof Lars Berglund, KTH Royal Institute of Technology, Sweden
- Prof Debes Bhattacharyya, Auckland University, New Zealand
- Prof Simon Bickerton, Auckland University, New Zealand
- Prof Chiara Bisagni, TU Delft, Netherlands
- Prof Alexander Bismarck, Imperial College/University of Vienna, UK/Austria
- Prof Brina Blinzler, Chalmers University of Technology, Sweden
- Prof Ian Bond, Bristol University, UK
- Prof Pedro Camanho, Universidade do Porto, Portugal
- Prof Wesley Cantwell, Khalifa University, UAE
- Prof Miroslav Cerny, Czech Technical University, Czech Republic
- Prof Wojciech Ciesielski, Jan Dlugosz University, Poland
- Prof Tsu-Wei Chou, University of Delaware, USA
- Prof Carlos Cimini, Federal University of Minas Gerais, Brasil
- Dr Peter Davies, IFREMER, France
- Prof Martine Dube, ETS Montreal, Canada
- Prof Martin L Dunn, University of Colorado, USA
- Prof Brian Falzon, Queens University, Northern Ireland
- Dr Stefanie Feih, SIMTech, Singapore
- Dr Sayata Ghose, Boeing, USA
- · Prof Larissa Gorbatikh, KU Leuven, Belgium
- Prof Emile S Greenhalgh, Imperial College London, UK
- Prof Soung Hoa, Concordia University, Canada
- Prof Pascal Hubert, McGill University, Canada

- Prof Daniel J Inman, University of Michigan, USA
- Prof Thomas Keller, Ecole Polytechnique Fédérale de Lausanne, Switzerland
- Prof Jang Kuo Kim, Hong Kong University of Science and Technology, Hong Kong
- Prof Tony Kinloch, Imperial College, UK
- Prof Woo-II Lee, Seoul National University, Republic of Korea
- Prof Josef Jančář, CEITECH, Czech Republic
- Prof Jinsong Leng, Harbin Institute of Technology, China
- Prof Xioling Liu, University of Nottingham, Nigbo, China
- Prof Staffan Lundstrom, Lulea University of Technology, Sweden
- Prof Yiu-Wing Mai, University of Sydney, Australia
- Prof Roberta Massabo, Universita degli Studi di Genova, Italy
- Prof Manjusri Misra, University of Guelph, Canada
- Prof Ozden Ochoa, Texas A&M, USA
- Dr Soraia Pimenta, Imperial College London, UK
- Prof Silvestre Pinho, Imperial College, UK
- Prof Anoush Poursartip, University of British Columbia, Canada
- Prof H Jerry Qi, Georgia Institute of Technology, USA
- Prof Abbasli Saboktakin, University of Sistan & Baluchestan, Iran
- Prof Karl Schulte, Technische Universität Hamburg-Harburg (TUHH), Germany
- Prof Paul Smith, University of Surrey, UK
- Prof Coutis Soutis, University of Manchester, UK
- Prof Ole Thomsen, University of Southampton, UK
- Prof Ignass Verpoest, Catholic University Leuven, Belgium
- Prof Anthony Waas, University of Washington, USA
- Prof Michael Wisnom, Bristol University, UK
- Prof Zhong Zhang, National Center for Nanoscience and Technology, China

Advanced Composite Manufacturing Solutions

Leading global player in advanced carbon fibre component manufacturing for the defence and aerospace industries

Quickstep is a leading company in the aerospace manufacturing industry – and our employees are the key to our success

We value talent, hard work and dedication, and in return, we support our employees.

That's why we continue to grow as an Employer of Choice.

SCIENTIFIC PROGRAM CODES

The guide below shows you how to find sessions/presentations using session numbers/program numbers.

Please note that you can also search for presentations using the ICCM22 conference app.

ORAL PRESENTATION SESSIONS

The session number is made up of 4 digits: XYZZ

 $\mathbf{X} = \text{day (Monday} = 1, \text{Tuesday} = 2)$

Y = session number on the day

ZZ = room code

The program number of oral presentations is made up of the session number and the order of the presentation in each session.

XYZZ-VV

X = day (Monday = 1, Tuesday = 2)

Y = session number on the day

ZZ = room code

VV = presentation order in the session

In the printed program, the names of the concurrent rooms are listed below and their location can be found in the venue map of this program book.

Session room number	Convention Centre room number
01	Plenary hall 2
02	Meeting room 205
03	Meeting room 206
04	Meeting room 208
05	Meeting room 209
06	Meeting room 210
07	Meeting room 211
08	Meeting room 212
09	Meeting room 213
10	Meeting room 214
11	Meeting room 215
12	Meeting room 216
13	Meeting room 217
14	Meeting room 218
15	Meeting room 219

MINI ORAL PRESENTATION AND POSTER PRESENTATION SESSIONS

The poster session number is made up of 5 digits: **PXYZZ**

P = poster

 $\mathbf{X} = \text{day (Monday} = 1, \text{Tuesday} = 2)$

Y = session number on the day

ZZ = room code for presentation

The program number for the mini oral presentations are made up as follows: **PXYZZ-VV**

P = poster

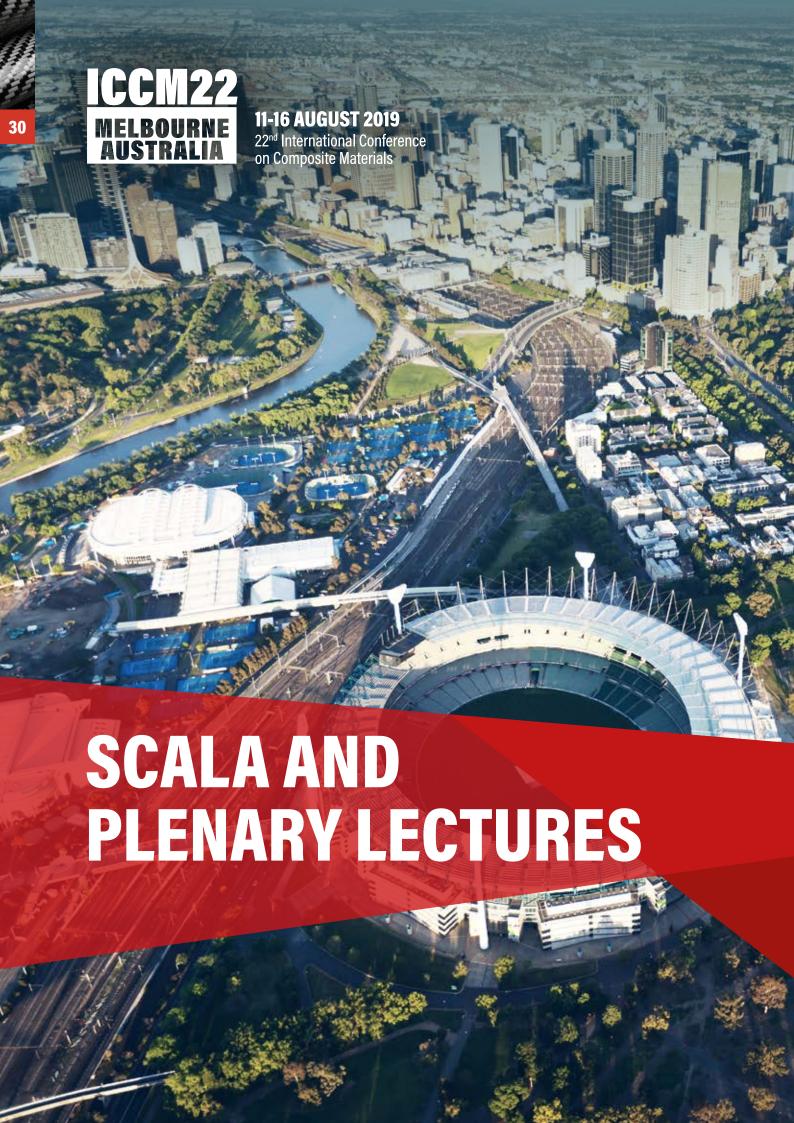
X = day (Monday = 1, Tuesday = 2)

Y = session number on the day

ZZ = room code for presentation

VV = presentation order in the session

PROGRAM COLOUR CODE


MONDAY 12 AUGUST

TUESDAY 13 AUGUST

WEDNESDAY 14 AUGUST

THURSDAY 15 AUGUST

FRIDAY 16 AUGUST

SCALA AND PLENARY LECTURES

The Scala lecture and all plenary lectures will be held in Plenary 2, Melbourne Convention and Exhibition Centre.

MONDAY 12 AUGUST			
Time Title			Affiliation
0900-0945	SCALA Lecture: ADVANCED COMPOSITES RESEARCH AND INNOVATION - AN AUSTRALIAN PERSPECTIVE	Murray Scott	Advanced Composite Structures Australia, Australia
0945-1030	NEW STRATEGIES FOR MANUFACTURING MULTIFUNCTIONAL COMPOSITES	Nancy Sottos	University of Illinois, USA
1400-1445	LIGHTWEIGHT CARBON FIBRE COMPOSITE AUTOMOTIVE WHEELS - FROM CONCEPT TO INDUSTRIALISATION	Jake Dingle	Carbon Revolution, Australia

	TUESDAY 13 AUGUST			
			Presenter	Affiliation
	0805-0850	THE STORY OF BIOBASED NANOMATERIALS AND THEIR USE IN COMPOSITE MATERIALS		Lulea University of Technology
		SHAPE MEMORY POLYMER COMPOSITES AND 4D PRINTING TECHNOLOGIES: FROM THE AEROSPACE TO BIOMEDICAL APPLICATIONS	Jinsong Leng	Harbin Institute of Technology

WEDNE	SDAY 14 AUGUST		
			Affiliation
0805-0850	FUTURE CHALLENGES FOR CARBON FIBRE COMPOSITES: A JOURNEY THROUGH THE VALUE CHAIN	Bronwyn Fox	Swinburne University, Australia
1345-1430	COMPOSITES 4.0: FROM DESIGN TO AUTOMATED MANUFACTURING	Peter Middendorf	University of Stuttgart, Germany

THURS	DAY 15 AUGUST		
Time	Title	Presenter	Affiliation
0805-0850	TRENDS IN AEROSPACE COMPOSITES	Jerry Young	Boeing, USA
1420-1505	DESIGN, MANUFACTURE AND PERFORMANCE OF TEXTILE COMPOSITES	Andrew Long	Nottingham University, UK

FRIDAY 16 AUGUST				
				Affiliation
	0805-0850	CHALLENGES IN COMPOSITES FOR MARINE STRUCTURES		United States Office of Naval Research, USA

KEYNOTE LECTURES

MOND	AY 12 AUGUST			
Time	Title	Presenter	Affiliation	Room
1100-1130	STRONTIUM TITANIUM OXIDE-GRAPHENE NANOCOMPOSITE THERMOELECTICS	Ian Kinloch	University of Manchester	Plenary 2
1100-1130	MULTIFUNCTIONAL ENERGY STORAGE COMPOSITE (MESC) STRUCTURES	Fu-Kuo Chang	Stanford University	Meeting room 210
1100-1130	FATIGUE LIFE OF POST-BUCKLED COMPOSITE STRUCTURES	Chiara Bisagni	TU Delft	Meeting room 211
1100-1130	ENHANCING LIGHTWEIGHTING: JOINING COMPOSITES WITH 3D PRINTED STRUCTURES	Stefanie Feih	A-Star	Meeting room 212
1100-1130	FILLING THE PROPERTY GAP OF MULTI- PHASE COMPOSITES THROUGH ARCHITECTURAL DESIGN	Hua-Xin Peng	ZheJiang University	Meeting room 213
1100-1130	3D PRINTABLE SHAPE MEMORY POLYMER COMPOSITES	Zhang Zhong	National Center for Nanoscience and Technology	Meeting room 219

TUESDAY 13 AUGUST													
		Presenter	Affiliation										
0900-0930	NANOCOMPOSITES AND HIERARCHICAL NANOENGINEERED ADVANCED COMPOSITES FOR ENHANCED MECHANICAL AND MULTIFUNCTIONAL PERFORMANCE	Brian Wardle	MIT	Plenary 2									
0900-0930	SELF-HEALING FIBRE REINFORCED POLYMER COMPOSITES - A BRISTOL PERSPECTIVE	Ian Bond	University of Bristol	Meeting room 210									
0900-0930	VIRTUAL DESIGN OF HIGH-PERFORMANCE DISCONTINUOUS-COMPOSITE STRUCTURES	Soraia Pimenta	Imperial College	Meeting room 211									
0900-0930	POLYMER NANOCOMPOSITES UNDERFILL MATERIALS FOR ELECTRONIC PACKAGING	Yiu-Wing Mai	University of Sydney	Meeting room 212									
0900-0930	OPPORTUNITIES AND CHALLENGES FOR COMPOSITES IN NEXT GENERATION MULTI-MATERIAL VEHICLES	Patrick Blanchard	Ford	Meeting room 213									
0900-0930	ACCELERATED TESTING METHOD FOR DURABILITY OF CFRP	Yasushi Miyano	Kanazawa Institute of Technology	Meeting room 219									

WEDNE	SDAY 14 AUGUST			
0900-0930	MECHANICAL PROPERTIES AND FRACTURE RESISTANCE OF THREE-DIMENSIONAL GRAPHENE/POLYMER COMPOSITES	Jang-Kyo Kim	University Science & Technology	Plenary 2
0900-0930	MODELING OF IMPACT DAMAGE AND COMPRESSION AFTER IMPACT OF LAMINATED COMPOSITE AEROSPACE STRUCTURES	Paul Davidson	Michigan University	Meeting room 211
0900-0930	INTERFACIAL DAMAGE IN FIBRE REINFORCED COMPOSITES MODELLED IN THE FRAMEWORK OF FINITE ELEMENTS WITH EMBEDDED REGIONS	Stepan Lomov	KU Leuven	Meeting room 212
0900-0930	CHARACTERISATION AND MODELLING OF STRUCTURAL BATTERY COMPOSITES	Lief Asp	Chalmers University	Meeting room 213
0900-0930	AN INTEGRATED APPROACH TO DESIGN AND MONITOR COMPOSITE STRUCTURES UNDER IN- SERVICE FATIGUE LOADINGS	Marino Quaresimin	Universita degi Studi di Padova	Meeting room 219

THURSDAY 15 AUGUST													
Time	Title	Presenter	Affiliation	Room									
1100-1130	DYNAMIC INSTABILITY OF ANISOTROPIC CYLINDERS IN CONFINING ENVIRONMENTS	Arun Shukla	University of Rhode Island	Plenary 2									
1100-1130	THERE IS NO SUCH THING AS A COMPOSITE MATERIAL - ONLY COMPOSITES OF MATERIALS	John Hart-Smith	Boeing (retired)	Meeting room 211									
1100-1130	INTEGRATING IMAGING TECHNIQUES FOR ASSESSING THE PERFORMANCE OF LARGE COMPOSITES STRUCTURES	Janice Barton	University of Southhampton	Meeting room 213									
1100-1130	REVEALING THE MOLECULAR-SCALE ROLE OF CARBON FIBRE FUNCTIONALISATION IN POLYMER COMPOSITES	Tiffany Walsh	Deakin University	Meeting room 219									

FRIDAY	7 16 AUGUST			
				Room
0900-0930	AMELOGENESIS: NATURE'S 3D PRINTING SYSTEM FOR MULTI-SCALE LAMINATES	Brian Cox		Plenary 2
0900-0930	MANUFACTURING RELATED DEFECTS -WHERE AND WHY THEY OCCUR, AND DO THEY MATTER?	Simon Bickerton	Auckland University	Meeting room 212
0900-0930	RESIN INFUSION COMPOSITES FOR AEROSPACE	Michael Edwards	Boeing Australia	Meeting room 213
0900-0930	MULTI-SCALE MODELING OF FIBER-REINFORCED PLASTIC COMPOSITES: FROM ATOMISTIC MODELING TO STRUCTURAL DESIGN	Tomonaga Okabe	Tohoku University	Meeting room 219

MONDA	Y 12 AUGUST															
Time	Plenary 2	Meeting room 205	Meeting room 206	Meeting room 208	Meeting room 209	Meeting room 210	Meeting room 211		Meeting room 212	Meeting room 213	Meeting room 214	Meeting room 215	Meeting room 216	Meeting room 217	Meeting room 218	Meeting room 219
0830-0900	Opening ceremony															
0900-0945	Plenary 2			ATION - AN AUSTRALIA				Australia								
0945-1030	Plenary 2	NEW STRATEGIES FOR	MANUFACTURING M	JLTIFUNCTIONAL COM	POSITES Nancy Sottos,	, University of Illinois, USA	\									
1030-1100	Coffee break Exhibition hall					_										
1100-1300	Nano-composites	1102 Green & natural fibre composites	Analysis of composite properties	Automated fibre placement	Hybrid composites	1106 Composite structures	1107 Computational and finite element methods		Polymer matrix materials	Interfaces and interphases	1110 Sensing 1: embedded sensing	1111 Structural power 1: multifunctional design and modelling	Non-destructive evaluation	1113 Composite materials: route to impact	1114 Durability, creep and aggressive environment	Joints
1100-1130 KEYNOTE 1: STRONTIUM TITANIUM OXIDE-GRAPHENE NANOCOMPOSITE THERMOELECTICS Ian Kinloch, University of Manchester (Plenary 2) KEYNOTE 2: MULTIFUNCTIONAL ENERGY-STORAGE COMPOSITES (MESC) STRUCTURES Fu-Kuo Chang, Stanford University (Meeting room 210) KEYNOTE 3: FATIGUE LIFE OF POST-BUCKLED COMPOSITES STRUCTURES Chiara Bisagni, TU Delft (Meeting room 21) KEYNOTE 4: ENHANCING LIGHTWEIGHTING: JOINING COMPOSITES WITH 3D PRINTED STRUCTURES Stefanie Feith, A-Star (Meeting room 212) KEYNOTE 5: FILLING THE PROPERTY GAP OF MULTI-PHASE COMPOSITES THROUGH ARCHITECTURAL DESIGN Hua-Xin Peng, Zheliang University (Meeting room 213) KEYNOTE 6: 3D PRINTABLE SHAPE MEMORY POLYMER COMPOSITES Zhang Zhong, National Center for Nanoscience and Technology (Meeting room 219)																
1130-1140	Move to concurrent ses	ssions														
1140-1200	1101-1 GRAPHENE: NOVEL BARRIER MATERIAL FOR CORROSION PROTECTION; IMPROVING SERVICE LIFE OF OFFSHORE PAINT Norfarah Aba, Petronas Research Sdn Bhd	ANALYSIS TO INVESTIGATE THE MECHANICAL AND FORMING BEHAVIOUR OF HEMP FIBRE WOVEN FABRICS / POLYPROPYLENE COMPOSITE Sheedev Antony, University of Technology of Troyes In this study, mechanical behaviour	composite are estimated.	ROBOTIC FIBRE PLACEMENT ON CURVED SURFACES Felix Raspall, Singapore University of Technology and Design The paper attempts	MATERIALS AS STRAIN SENSORS IN FIBRE/ EPOXY MODEL COMPOSITES Jingwen Chu, The University of Manchester This study has demonstrated the use of both discontinuous graphene nanoplatelets and continuous CVD grown graphene as		1107-1 MINIMIZATION OF SINK MARKS FOR INJECTION MOULDED KENAF/ PP COMPOSITES IN INJECTION MOULDING PROCESS BY NUMERICAL SIMULATION Abu Bakar Sulong, Universiti Kebangsaan Malaysia The moulding parameter of injection moulded kenaf/ PP composites investigated by numerical simulation. Response surface method (RSM) is used to optimise different parameters of kenaf/ PP with 20 wt% kenaf.		STEEL-REINFORCED RESIN UNDER		1110-1 MULTIFUNCTIONAL COMPOSITE WITH PRINTED SENSORS PengHeng Xie, University of Chester	COMPOSITES	Center (DLR) Slowly but surely, more and more automated thermography measurement is being applied in industry. Thermography provides a high	D STIFFNESS ON IMPACT RESPONSE OF CURVED SANDWICH PLATES Hessam Ghasemnejad. Cranfield University	UNIDIRECTIONAL AND 2D WOVEN	N INTERFACIAL CRACK PROPAGATION IN ADHESIVE BONDING Johnatan Leplat, IRDL, CNRS UMR 6027, ENSTA Bretagne
1200-1220	the magnetisation of graphene via decoration with Iron Oxide. Graphene flakes	REINFORCED COMPOSITES (DWRC) Marion Frey, Eth Zürich Delignified densified wood represents a new promising lightweight, high-performance and bio-based material with high potential to partially substitute s natural fiber reinforced- or glass fiber reinforcec composites in the	Xiao Wei, Shanghai Jiao Tong University An inverse method is proposed to determine the interface elasticity parameters, which could character the mechanics properties	OF CO-CURED INTEGRAL HAT- TIFFENED PANEL WITH AUTOMATED FIBRE PLACEMENT Cong Zhao, Nanjing University of Aeronautics and Astronautics A hat-stiffened panel was manufactured based on automated fibre placement and co-curing process. Factors influencing geometric and fibre distribution of hat-stiffened panel were discussed, including material properties and	ON THE PSEUDO- DUCTILITY OF THIN-PLY HYBRID COMPOSITES Gergely Czél, Budapest University of Technology and Economics Interlayer hybrid configurations with continuous and discontinuous carbon between continuous glass layers were investigated. Both temperature and	COMPOSITES VIA OUT-OF-OVEN ZONAL CURING Tomasz Garstka, Lean Manufacturing & Assembly Technologies (LMAT) Limited	E BILAYER MORPHING COMPOSITES Julio Aguilar-Tadeo, The University of Manchester		1108-2 CRITICAL VOID CONTENT OF CF/PEEK THERMOPLASTIC COMPOSITES: IMPACT ON NDT AND MECHANICAL PROPERTIES Diego Saenz-Castillo, FIDAMC	summarise our recent efforts in surface modification and how this has led to coloured carbon fibres and the	carbon fiber reinforced plastics was measured by the electric property change. The temperature and frequency dependence of the electric property were clarified.	STRUCTURAL SUPERCAPACITORS Emile Greenhalgh, Imperial College London	1112-2 NON-DESTRUCTIVE QUALITY ASSESSMENT FOR SEMI-FINISHED TEXTILES Tino Hermann, The University of Auckland The presented airflow-based methods provid a quality assessment of semi-finished textiles without the need for reference measurements or historical data, with a strong focus on fast and simple measurements.	RESISTANCE OF EPOXY-BASED POLYMER COATING WITH FLY ASH AND FIRE RETARDANT FILLERS FOR COMPOSITE MATERIALS Mojdeh Mehrinejad Khotbehsara,	/ Element Materials /	ELEMENT Vincent Rohart, Ecole de technologie supérieure Resistance welding of thermoplastic composites is performed with a stainless-steel heating element which have low

MONDA	Y 12 AUGUST															
Time	Plenary 2					Meeting room 210					Meeting room 214					
1220-1240	1101-3 GRAPHENE- ENHANCED COMPOSITE PAINTS FOR CORROSION PROTECTION OF OFFSHORE RISERS Mohd Shamsul Farid Samsudin, Petronas Research		1103-3 CONTINUUM DAMAGE MECHANICS MODELLING OF A 3D PRINTED CURVILINEAR CFRTP Masahito Ueda, Nihon University	MANUFACTURED COMPOSITE TUBES Matthew David, UNSW Sydney A successful methodology has been implemented to study the influence of fiber architecture on crush performance. This is important for designing	FIBRE METAL LAMINATES Mitch Dunn, The University of Queensland Hybrid composite structures combining aluminium alloy and glass/epoxy are considered, with a focus on how the surface preparation	1106-3 FRACTURE MECHANICS-IN- FORMED MULTI- SCALE THERMO- MECHANICAL DAMAGE MODEL FOR CERAMIC MA- TRIX COMPOSITES Travis Skinner, Arizona State University	1107-3 UNDERSTANDING FAILURE INITIATION LOCATIONS IN STOCHASTIC VIRTUAL COMPOSITE SPECIMENS USING A MACHINE LEARNING FRAMEWORK Nimal Kumar Balasubramani, University of New South Wales		1108-3 INFLUENCE OF MOISTURE GRADIENTS ON THE BENDING PROPERTIES OF SHORT GLASS FIBER REINFORCED POLYAMIDE 6 Anna Katharina Sambale, TU Dortmund University This contribution investigates the influence of moisture gradients on the bending properties of short-glass-fiber- reinforced polyamide 6 at constant integral moisture content using three-point bending test	Cinc	1110-3 MULTIFUNCTIONAL FIBRE REINFORCED COMPOSITES: FROM SMART OUT-OF-OVEN MANUFACTURING TO INTEGRATED SENSING AND DE- ICING CAPABILITIES Han Zhang, Queen Mary University of London An extremely energy efficient and intrinsically safe method to manufacture thermoset based FRPs with integrated multifunctionalities has been developed. The embedded nanocomposite layer can be used from out-of-oven curing to strain/damage sensing and de-icing.	AND DESIGN OF STRUCUTRAL BATTERIES WITH LIFE CYCLE ASSESMENT Wilhelm Johannisson, KTH Royal Institute of Technology A bottom-up analytical modelling of a structural battery's ability to save system mass. Investing mechanical properties, electrochemical properties, and a life cycle assessment.	Matthew Ibrahim, Defence Science and Technology	III3-3 IMPACT BEHAVIOR OF SANDWICH STRUCTURES BASED ON CORRUGATED COMPOSITE CORES FILLED WITH PVC FOAM Jin Zhou, University of Liverpool The impact response of sandwiches base on corrugation core filling with PVC foam have been investigated experimentally and numerically. The configuration optimization of the hybrid sandwiches was studied base on thickness of corrugation cores and density of filled foam.	ON THE DURABILITY OF WOVEN CARBON/VINYL ESTER COMPOSITES	PRETREATMENT OF ALUMIUM CASTINGS FOR HYBRID INJECTION MOLDING
1240-1300	1101-4 JANUS GRAPHENE NON-WOVEN FABRICS FOR ULTRALIGHT ELECTROMAGNETIC INTERFERENCE SHIELDING Ying Wu, University of Science and Technology Beijing				PROPERTIES OF POLYAMID-6- GALVANIZED-STEEL	FOR BIO-INSPIRED TOUGHENING OF COMPOSITE MATERIALS AND STRUCTURES Adrian Orifici, RMIT University	TIO7-4 FINITE ELEMENT ANALYSIS OF CFRP-TO-CFRP JOINT STRUCTURE CONTAINING FIBER- METAL LAMINATES Dong-woo Lee, Changwon National University In this study, it was developed that the analytical model of CFRP-to-CFRP structure by using cohesive zone modeling (CZM) method, which containing fiber-metal laminates.		MANUFACTURING PROCESS AND PROPERTIES OF CARBON FIBER REINFORCED PEK COMPOSITES MODEFIED WITH MWNTS Jupeng Song, Beihang University In this work, carbon fiber/poly(ether ether ketone) (CF/PEEK) composites were prepared by the wet powder impregnation. PEEK powders were mixed with different content of multi-walled carbon nanotubes (MWCNTs) in water homogeneously.		1110-4 GRAPHENE OXIDE/GRAPHITE NANOSHEETS COMPOSITE THIN FILMS FOR WEARABLE STRAIN SENSORS Qingbin Zheng, The Hong Kong University of Science and Technology We utilize the graphenoxide and graphite	1111-4 STRUCTURAL POWER PERFORMANCE REQUIREMENTS FOR FUTURE AIRCRAFT INTEGRATION Sang Nguyen, Imperial College London This paper investigates the application of estructural power in aircraft cabins by integrating floor panels with face sheets made of structural power composites to power the in-flight entertainment system.	;	OF TOUGHENED	LOW TEMPERATURE CURE RESIN FOR HIGH TEMPERATURE COMPOSITE OVERWRAP REPAIRS Yee Chech Tan, PETRONAS Research	RESISTANCE HEATING ELEMENT ON JOINING STRENGTH OF CF/
1300-1400	Lunch Exhibition hall															
1300-1400	Boeing lunch sympos *invitation only event Michael Edwards, Facil	itator ne Uni Research Director Professor of Aerospace	lustry collaboration, fo	cus on composite mate	rial development	Ø	BOEING									
1310-1355		ry roundtables - 10x Ma *	terial Solution from e-X	stream Engineering, W	hat is the future of mat	erial modeling ?	C Software									
1400-1445	PLENARY LECTURE: I Plenary 2	LIGHTWEIGHT CARBON	I FIBRE COMPOSITE A	UTOMOTIVE WHEELS	- FROM CONCEPT TO	INDUSTRIALISATION J	ake Dingle, Carbon Revolu	tion, Australia								
1445-1500	Move to concurrent ses															
1500-1600	1201 Aerospace	Processing & properties of composites	1203 Green & natural fibre composites		Automated fibre placement	1206 Composite structures	Langzauner GmbH industry session		1208 Hybrid composites	Interfaces and interphases	1210 Structural health monitoring	1211 Structural power 2: multifunctional constituents	Non-destructive evaluation	1213 Recycling and sustainability	1214 Tsai award presentations	1215 Joints
1500-1520	1201-1 LIFE MANAGEMENT OF ADHESIVELY BONDED COMPOSITE STRUCTURES Lucy Li, National Research Council Canada	PLACEMENT (ATP) PROCESS-MICRO ANALYSIS Ketaki Mishra, Universite De Nantes A numerical model is presented to analyze the thermal behavior of the tapes at microscale	SITU DEPOSITING SIZE-CONTROLLED NANO-SIO2 PARTICLES ON THE MECHANICAL AND SURFACE PROPERTIES OF JUTE FIBERS Xuan Liu, Institute of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics In order to enhance the mechanical and		FIBER PLACEMENT OF THERMOPLASTIC COMPOSITES Lars Brandt, German Aerospace Center (dlr) An opportunity for flexible, cost-effective production of aerospace components is found in the usage of new heating systems such as the pulsed xenon flashlamp, since it renders the use	TOLERANCE LEVELS ON THE BUCKLING LOAD OF UNSTIFFENED CFRP CYLINDRICAL SHELLS Tobias Hartwich, Hamburg University of Technology Unstiffened CFRP cylindrical shells under axial compression proper to husble. One	Langzauner GmbH industry session *invitation only event* CHALLENGES IN INDIVIDUAL AUTOMATION SOLUTIONS FOR INCREASING PRODUCTION EFFICIENCY IN AVIATION Bernhard Hauer Sponsored by Langzauner Perfect		1208-1 COMPRESSIVE FAILURE OF HYBRID CFRP- CFRP LAMINATED COMPOSITES Mark Battley, University of Auckland The effect of hybridisation of HM and UHM carbon fibre laminates on strength and stiffness under compression was investigated through physical testing and analysis.	PSEUDO-DUCTILE BEHAVIOUR OF CARBON FIBER REINFORCED	1210-1 A NANOCOM-POSITES-BASED, ALL-INKJET-PRINTED, FLEXIBLE, ULTRA-BROADBAND FILM SENSOR FOR IN-SITU ACQUISITION OF DYNAMIC STRAIN Pengyu Zhou, The Hong Kong Polytechnic University All inkjet-printed nanocomposite sensors for structural health monitoring are developed and the printed sensors are of the advantages of high sensitivity and fidelity, as well as broadband sensing frequency up to 500 kHz.	PROPERTIES OF STRUCTURAL BATTERY ELECTRODES Lynn Maria Schneider, Kth Royal Institute of Technology A feasible manufacturing process for multifunctional structural batteries is presented. The technique is evaluated with respect to the multifunctional performance of the matrix material and of	Andreas Schiffer, Khalifa University Experiments and numerical calculations are performed to study the interaction between nonlinear solitary waves in granular chains and laminated	THERMOPLASTIC COMPOSITES USING RECYCLED CARBON FIBRE Christina Froemder, ELG Carbon Fibre The international research and collaboration between universities and industry shows a novel step forward and offers	COMPOSITES UNDER TENSION Guillermo Idarraga, National University of Colombia Stiffness of the adjacent layers and the stacking sequence play an important role in the failure strain of the carbon plies and therefore in the hybrid effect.	director and carbon fiber reinforced energy

MONDAY 12 AUGUST

1520-1540

SCIENTIFIC PROGRAM

39

SCIENTIFIC PROGRAM

Langzauner GmbH industry session

	ALUMINUM/ CARBON FIBER REINFORCED COMPOSITE DUAL PLATE Gang LUO, Nanjing University of Aeronautics and Astronautics, Nuaa An experiment of ice ball impact on Aluminum/Carbon Fiber Reinforced Composite dual plate was carried out to study the dynamic responses and damage of the target. The external and internal damage of Aluminum/ Composite dual plate were described in this presentation.	COMPOSITES USING FRONTAL POLYMERIZATION Elyas Goli, University of Illinois At Urbana- champaign	METAL FLAME RETARDANT FOR FLAMMABLE COMPOSITES Prabhakar M.N., Changwon National University		CONTAINING GAPS FABRICATED BY	GRAPHENE OXIDE IN POLYMER-BASED COMPOSITES SERVICED AT LOW TEMPERATURE ENVIRONMENT	event* CHALLENGES IN INDIVIDUAL AUTOMATION SOLUTIONS FOR INCREASING	0 0 11 C <u>Y</u>	OF HYBRID, OVERMOULDED HERMOPLASTIC OMPOSITE PARTS ves Becker, Institut ür Verbundwerkstoffe imbh	POLYMERS Takuya Matsumoto, Kobe University We focused on the adhesion interphase of polyamide 66 laminates. For the interphase analysis with confocal Raman scattering spectroscopy, the protonated and	IN COMPOSITES CONTAINING FLAWS Ahmed Maslouhi, Université de Sherbrooke This paper presents an original approach based mainly on acoustic emission monitoring to determine fatigue life	STRUCTURAL POWER	ULTRASONIC TESTING COMBINED WITH PATTERN RECOGNITION Jens Schuster, University of Applied Sciences Kaiserslautern The aim of this study has been to develop pattern recognition as an approach to identify kissing bonds in adhesive joints by means of ultrasonics. For this purpose, kissing bonds have been attempted to be manufactured in by varying ratios of a two- part adhesive.	<u>Essi Sarlin</u> , Tampere University	COMPOSITE T-JOINT: FIBER- OPTIC BASED MONITORING AND NUMERICAL SIMULATION Shinsaku Hisada, The University of Tokyo	DELAMINATION IN MECHANICALLY JOINED CARBON FIBER COMPOSITES Julian Vorderbrüggen, University of Paderborn Thermally induced damages in mechanically joined CFRP metal joints occur during heat treatment according to automitive dip coating. Those damages are being investigated and minimized by suitable countermeasures in this presentation.
1540-1600	BASED ON SURFACE	SELF-LOCKED COMPOSITE THIN- WALLED TUBE SYSTEM Yang Zhao, Chongqing	1203-3 EXTRACTED LIGNIN FROM NATIVE AUSTRALIAN LIGNOCELLULOSIC BIOMASS AS A POWERFUL AGENT FOR HIGH- PERFORMANCE COMPOSITES Shammi Sultana Nisha, Swinburne University of Technology The present study aims to design high performance functionalized lignin- epoxy composites. In this work, the triethylammonium hydrogen sulphate ionic liquid (IL) was introduced onto the surface of lignin micro/ nanoparticles while it was extracted from biomass, to prepare a highly functional and reinforcing IL-Lignin filler in an epoxy matrix.	f	WOVEN BASALT FIBRES LAMINATES					1209-3 TAILORING INTERFACIAL ADHESION IN BASALT FIBRE REINFORCED POLYMER COMPOSITES Maria Carolina Seghini, Sapienza-Università di Roma	1210-3 IN-SITU SENSING OF RANDOM FAILURE IN COMPOSITE STRUCTURES Sung Hoa, Concordia University Development of random failure in composite structures due to cyclic loading can be detected using the method presented in the paper.	MULTIPHYSICS MODELLING OF STRUCTURAL BATTERY COMPOSITES David Carlstedt, Chalmers University of Technology Multiphysics modelling of structural battery		COMPOSITE MANUFACTURING Christian Goergen, Institut für Verbundwerkstoffe Gmbh A new process is introduced, called "Resin Transfer Pressing" (RTP). RTP exploits specific advantages of recycled nonwoven fabrics in a thermoset press		
1600-1630	Coffee break Exhibition hall															
1630-1830	1301 Nano-composites	Bio-inspired composites	Green & natural fibre composites	1304 Design and manufacture for multifunctionality	Automated fibre placement	1306 Composite structures	1307 Computational and finite element methods	Po	308 Polymer matrix naterials	1309 Interfaces and interphases	Sensing 2: composites as stain sensors		Non-destructive evaluation	1313 Recycling and sustainability	1314 Tsai award presentations	1315 Joints
1630-1650	1301-1 ADVANCED POLYMERIC NANOCOMPOSITES WITH FUNCTIONALIZED GRAPHENE ANALOGUES OF MOS2 Moitaba Ahmadi, Deakin University	1302-1 THEORETICAL PREDICTION OF BRITTLE- TO-DUCTILE TRANSITION OF BIO-INSPIRED NACREOUS COMPOSITES Shaokang Cui, Beihang University The mechanical behaviors of nacre- like composites are evaluated by a combination of analytical solution and numerical simulation through the modification of the classic tension-shear chain(TSC) model.	Francesca Sbardella, University of Rome "sapienza"	PRELIMINARY EXPERIMENTATION OF A MULTISTABLE KIRIGAMI STRUCTURE Oliver Myers, Clemson University	DEFECTS IN THERMOPLASTIC AFP PARTS Ashley Chadwick, German Aerospace Center (DLR) A combination of in- process monitoring and ultrasound scanning is used to identify defects in a thermoplastic	OF EXTENSION- TWISTING COUPLED LAMINATES WITH MATCHED ORTHOTROPIC STIFFNESS Kim Kheng Lee, Singapore Polytechnic An experimental validation study is presented for three	ROS-HYBRID COMPOSITES Rizwan Saeed Choudhry, University of Derby A new approach for parametric model generation of discontinuous fibre composites (DFC) that achieves a realistic non-overlapping architecture of Random, Aligned, Tailored and Hybrid	TI O C H H	308-1 ENSILE BEHAVIOUR F THIN-PLY COMPOSITES laihong Wu, lenan University of echnology	PROPERTIES OF GRAPHENE NANO- PLATELETS COATED CARBON FIBER EPOXY COMPOSITES Alok Kumar Srivastava, Indian Institute of	SENSOR WITH LOAD BEARING CHARACTERISTICS IN COMPOSITE STRUCTURES Seung Yoon On, Korea Advanced Institute of Science and Technology	in capacitive	VIA X-RAY COMPUTED TOMOGRAPHY Silvano Sommacal, The Australian National University State-of-art 3D X-ray micro computed tomography, combined with tomographic volume analysis and visualization tools, has been utilized to study a suite of highly different carbon fibre reinforced	PRETREATMENT FOR CARBON FIBRE RECYCLED FROM COMPOSITE BY PYROLYSIS Sigi Hag, University of Nottingham Ningbo China	1314-1 TOUGHENING EPOXY SYNTACTIC FOAMS WITH MILLED CARBON FIBRES: MECHANICAL PROPERTIES AND TOUGHENING MECHANISMS Sammy He, Imperial College London	1315-1 STUDY OF ENVIRONMENTAL EFFECTS ON THE COMPOSITE-TO- METAL DOUBLE LAP SHEAR JOINTS Qian Zhang, Hefei University of Technology

MONDA	Y 12 AUGUST														
Time	Plenary 2	Meeting room 205	Meeting room 206	Meeting room 208	Meeting room 209	Meeting room 210	Meeting room 211	Meeting room 212	Meeting room 213	Meeting room 214	Meeting room 215	Meeting room 216	Meeting room 217	Meeting room 218	Meeting room 219
1650-1710	1301-2 USE OF GRAPHENE TO REDUCE RESIN CURE SHRINKAGE Wei Siang Sum, PETRONAS Research	FOR STRUCTURAL INTEGRITY Bilkka Häsä, Imperial College London We designed new CFRP and hybrid composites with bio-inspired crossed-lamellar microstructures. We demonstrated that these composites preserve their structural integrity	a new way of using	multi-functional conformal antennas based on new electromagnetic meta- material approaches, specifically holographic antennas based on	HEAT SOURCES FOR AUTOMATED DRY FIBRE PLACEMENT: XENON FLASHLAMP- VS. INFRARED-HEATING Dominik Deden, German Aerospace Centre Augsburg In this study, a xenon-flashlamp heating system is benchmarket to infrared radiators in terms of peel strength	IMPROVED POST-CRITICALLY STABLE PERFORMANCE Christopher York, is Singapore Institute of Technology This article discusses laminate performance, relating to pre- and post-critically stable din-plane response, for double angle-ply laminates, which are	1307-2 FUTURE MICROBOND TESTING - FINITE ELEMENT SIMULATION OF OPTICAL FIBERS FOR STRAINS Royson Dsouza, Tampere University Finland The paper presents a 3D Finite Element (FE) modeling and simulation of the mirobond test with FBG sensors for local strain sensing and improved understanding of the fiber droplet interface.	1308-2 INVESTIGATION ON IMPROVING THE COMPRESSIVE STRENETH OF THE UNIDIRECTIONAL CARBON FIBER REINFORCED POLYMER COMPOSITE Long Li, Aerospace Research Institute of Materials and Processing Technology Effect of key factors on the compressive properties of unidirectional carbon fiber reinforced polymer is investigated including the diameter of fibers, Young's modulus of resin and interfacial bonding strength.	SELF-REINFORCED POLYPROPYLENE COMPOSITE Amel Terras, IMP INSA Lyon The object of this study is to understand to what extend phenomenons involved in the interface building of a self-reinforced polypropylene composite can be related to its overall mechanical properties.	Jalal Nasser, University of Michigan Zinc oxide interphases are used to tailor the interfacial properties of carbon fiber reinforced polymer matrix composites for simultaneously optimal performance in	ELECTRODES FOR MULTIFUNCTIONAL COMPOSITE MATERIALS Karl Bouton, KTH Roya Institute of Technology The study aims at developing a coating technique for the making of structural positive electrodes, i.e. Lithium oxide coated-carbon fibres. The subsequent technique consists in a Layer-	Nanjing University of Aeronautics and Astronautics Fatigue life prognosis of composite laminates is realized using Bayesian inference to obtain the distribution of parameters of a velocity degradation model, and laser ultrasonic method for wave velocity	a recycling framework for compression moulding of uncured prepreg offcuts. The processing aspect of the framework is discussed in detail, where thermochemica resin characterization and 1-D flow-compaction trials are used to understand the impact that a resin's processing viscosity	Tobias Laux, University of Southampton An experimental procedure is devised based on a redesigned Modified Arcan Fixture (MAF) to investigate composite laminates subjected to combined tension/compression-shear loading. Experimental results for three multidirectional, quasities isotropic carbon/epoxy laminates with different ply thicknesses and fibre orientation angles are presented.	WELDING PROCESS FOR GLASS FIBER THERMOPLASTIC COMPOSITES IN AEROSPACE APPLICATIONS Martine Dube
1710-1730	TENSILE PROPERTIES OF CRYSTALLINE POLYMER COMPOSITE SYSTEMS FILLED WITH SPHERICAL SILICA NANOPARTICLES HAVING HYDROPHILIC SURFACES Mitsuru Tanahashi, Toyama Prefectural University Tensile properties of the PFA and the PP nano-composites filled with silica nanospheres having untreated hydrophilic surfaces were investigated with a focus on the effects of silica/polymer matrix interfacial debonding.	POCKET GEOMETRY AROUND THE MICROVASCULE IN SELF-HEALING COMPOSITES Vihao Ma, School of Aeronautic Science and Engineering, Beihang University Two analytic methods are developed to predict the resin pocket geometry around the microvascule in self-healing composites. The bending strain energy is calculated on the fiber scale and layer scale respectively.	SANDWICH STRUCTURES: STATIC AND DYNAMIC RESPONSE Claudia Sergi, Sapienza University of Rome Comparison of agglomerated cork and PVC foams mechanical properties	PARAMETRIC MECHANICAL METAMATERIALS Hang Yang, Harbin Institute of Technology This work expands the multi-functional applications of non-positive parametric mechanical metamaterials(neg-	LAMINATION STEPS IN HIGH PERFORMANCE THERMOPLASTIC COMPOSITES BY IN-SITU CONSOLIDATION PROCESS Ingrid Esquerra, FIDAMC	1306-3 ENERGY ABSORPTION OF EXPANDED METAL TUBES UNDER EXPANDING LOAD Guoxing Lu, Swinburne University of Technology	1307-3 CROSS-SECTION ANALYSIS OF TAPERED BEAMS Paola Bertolini, DTU A numerical comparison of the stresses evaluated with both 3D FEA and cross-section analysis highlights how the latter currently lack the capability to correctly recover the stresses in tapered beams.	Composite Materials America Inc. It is known that epoxy- based composite materials have been limited to service temperatures of below 140°C, forcing the use of high temperature materials like bismaleimide (BMI, PEEK, or polyiminde composites. Toray research group has recently developed an epoxy-based resin system which has a glass transition temperature (Tg) of 23°C which will serve to widen the use of epoxy to a higher	area of fiber metal laminates (FMLs), the reinforcement of metal/resin interface is desired urgently. In this study, a metallic-inorganic-organic system and related equations were developed to describe the interfacial behaviors.	1310-3 HUMAN SKIN- MIMICKING INTEGRATED SENSOR WITH ULTRAHIGH SENSITVITY FOR MULTIDIRECTIONAL SENSING Haomin Chen, Hong Kong University of Science and Technology Mimicking human skin a novel multidirectiona strain sensor consistin of a PUGA composite and a spinosum- like conductive microstructure is developed for sensing deformation from different directions.	COMPOSITES Wen Dong Quan, Durham University, UK	FOR DETECTION OF IMPACT DAMAGE IN CARBON FIBRE	SUSTAINABLE CARBON Vijava Rangari, Tuskegee	1314-3 MODELLING THE FRACTURE ENERGY OF POLYMER NANOCOMPOSITES Mukesh Bhasin, RMIT University Mechanistic-based analytical models to predict the mode I interlaminar fracture toughness of carbon nanoparticle reinforced polymer composites are described, and compared to experimental data.	COMPOSITE TO STEEL JOINTS IN MARINE APPLICATIONS Geir Ólatsson, University of Southampton
1730-1750	1301-4 COMPETITION BETWEEN DIFFERENT TOUGHENING MECHANISMS IN COMPOSITES WITH CARBON NANOTUBE GRAFTED FIBERS Qiang Liu, Department of Materials Engineering, Ku Leuven	University of Technology Sydney	MATERIALS Chris von Klemperer, University of Cape Town, Mechanical Engineering Sustainable fibre reinforced epoxy composites containing Jute or Flax reinforcement were exposed to explosive airblast loading and	PRINTING OF RESIN ADDITIVES FOR SELECTIVE PROPERTY ENHANCEMENT Ian Gent, University of Bristol A customised inkjet printer was designed to deposit resin additives. Open hole test specimens containing thermoplastic particles exhibited a 3.8% increase in failure strength compared to unmodified specimens to unmodified specimens.	AUTOMATED DRY FIBRE PLACEMENT FOR HIGH RATE DEPOSITION Anthony Evans, University of Nottingham Investigation and explanation into the development and design of a high-speed automated dry fibre placement machine (ADFP). Presentation focuses on the data acquisition and transfer	RESPONSE OF BALLISTICALLY DAMAGED COMPOSITE HONEYCOMB SANDWICH STRUCTURES Binod Aryal, The University of New South Wales	INVESTIGATION OF CORRUGATED LAMINATES SUBJECTED TO TRANSVERSE SHEAR LOADING Daniel Thomas Filipovic, ETH Zurich The presentation will give insight on the results and the derivation of an efficient finite element model derived for calculating the response of corrugated laminates subjected to transverse shear loading.	temperature range. 1308-4 FILLING MICROTUBULES WITH TRIPHENYL PHOSPHATE FOR FLAME-RETARDING EPOXY COMPOSITES Jun Ma, University of South Australia			COMPOSITES	IDENTIFICATION FOR CFRP	Sivi Shao, The University of Tokyo The study proposed a method to evaluate the fiber orientation distribution (FOD) of Carbon Fibre Reinforced Plastics (CFRP) from Micro	LAYER LATTICE STRUCTURE Chuanlei Li, Beijing Institute of Technology A novel modeling has been proposed	EXPERIMENTAL STUDY ON THE PERFORMANCE OF HYBRID METAL- COMPOSITE JOINTS AT QUASI-STATIC AND INTERMEDIATE STRAIN RATES Karthik Ramaswamy, University of Limerick

43

TUESD/	AY 13 AUGUST														
Time 0800-0805	Plenary 2 Day 2 Welcome & Anne		Meeting room 206	Meeting room 208	Meeting room 209	Meeting room 210	Meeting room 211	Meeting room 212	Meeting room 213	Meeting room 214	Meeting room 215	Meeting room 216	Meeting room 217	Meeting room 218	Meeting room 219
0805-0850	PLENARY LECTURE: 1		SED NANOMATERIALS	AND THEIR USE IN CO	MPOSITE MATERIALS	Kristiina Oksman, Lulea U	niversity of Technology								
0850-0900	Plenary 2 Move to concurrent ses	ssions													
0900-1040	2101 Nano-composites	2102 Renewable carbon	2103 Meta-composite	2104 Design and manufacture for multifunctionality	2105 Advanced manufacturing and automation	2106 Scott White symposium	2107 Computational and finite element methods	2108 Resin and polymers	2109 Green & natural fibre composites	2110 Actuation 1: morphing multifunctional composites	2111 Materials by design	2112 Structural health monitoring	2113 Renewable energy	2114 Durability, creep and aggressive environment	2115 Repair
0900-0930	KEYNOTE 2: SELF-H KEYNOTE 3: VIRTUA KEYNOTE 4: POLYMI KEYNOTE 5: OPPOR KEYNOTE 6: ACCELI	RMANCE <u>Brian Wardle, I</u> EALING FIBRE REINFO AL DESIGN OF HIGH-PE ER NANOCOMPOSITE: TUNITIES AND CHALL ERATED TESTING MET	MIT (Plenary 2) DRCED POLYMER COM ERFORMANCE DISCON S UNDERFILL MATERIA ENGES FOR COMPOSI	POSITES - A BRISTOL ITINUOUS-COMPOSITI ALS FOR ELECTRONIC ITES IN NEXT GENERA	PERSPECTIVE <u>lan Bond</u> E STRUCTURES <u>Soraia I</u> PACKAGING <u>Yiu-Wing I</u> TION MULTI-MATERIAL	HANCED MECHANICA J. University of Bristol (Mee Pimenta, Imperial College Mai, University of Sydney (VEHICLES Patrick Bland Technology (Meeting room	eting room 210) (Meeting room 211) (Meeting room 212) chard, Ford (Meeting room								
0930-0940	Move to concurrent ses	ssions 2102-1	2103-1	2104-1	2105-1	2106-1	2107-1	2108-1	2109-1	2110-1	2111-1	2112-1	2113-1	2114-1	2115-1
0.540-1000	SYNERGISTIC EFFECT OF DUAL-SCALE CARBON FILLERS ON SENSITIVITY AND STABILITY OF FLEXIBLE STRAIN SENSORS Fan Zhang, School of Mechanical and Manufacturing Engineering, University of New South Wales	FROM NANO TO MICRO: HARDNESS PREDICTION IN BIOCARBON BASED COMPOSITES Oisik Das, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology Using the	PORO-ELASTIC ACOUSTIC META MATERIALS WITH IMPROVED SOUND ABSORPTION Chris Fuller, Virginia Tech	A STUDY ON THE PREFORM DEFORMATION IN THERMOPLASTIC COMPOSITE OVERMOULDING Mario Adrian Valverde, Bristol Composite Institute (ACCIS) Two experimental setups are used to investigate the compaction behaviour of continuous carbon fibre - Polyphenylene Sulphide (CF- PPS) composites processed via injection overmoulding.	ADDITIVE MANUFACTURED ELECTROACTIVE SHAPE MEMORY POLYMER COMPOSITES Irina Garces, University of Alberta Shape Memory Polymer Composites can be used as sensors and actuators. This study explores the manufacturing and development of an electroactive self- sensing SMPC for field	MODELING OF A NEW COMPOSITE MANUFACTURING PROCESS BASED ON FRONTAL POLYMERIZATION Philippe Geubelle, University of Illinois at Urbana-Champaign	DEVELOPMENT OF A 3D FINITE LEMENT MODEL OF A QUASI-STATIC INDENTATION TEST IN A TYPE III PRESSURE VESSEL Erick Montes De Oca Valle, University of Southampton A 3D FE model is developed to predict the de-cohesion and the resultant deformation of the aluminium liner of a Type III pressure vessel subjected to a quasi- static indentation test.	EXPERIMENTAL STUDY OF THE	MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HEMP ELEMENTARY FIBRES FOR COMPOSITE APPLICATIONS BY MICRO-COMPUTED	ENABLING BIOMIMETIC MORPHING UAVS Geoffrey Spedding, University of Southern California A practical telescoping wing is combined with bio-inspired body-tail configuration to produce a novel design where tail deployment and configuration come from clutched electrolaminate materials.	COUPLED PIE- ZORESISTIVE AND THERMORESISTIVE BEHAVIOR OF CAR- BON NANOTUBE YARNS AND THEIR THERMOSETTING MONOFILAMENT COMPOSITES Jandro Abot, The Catholic University of	MEASURED LAMB WAVE RADIATION PATTERNS FROM	RELIABILITY OF COMPOSITE TIDAL TURBINE BLADES Mael Arhant, Ifremer This paper describes early results from the Realtide H2020	THIN-PLY EFFECTS ON LONG-TERM THERMAL STABILITY OF HIGH TEMPERATURE POLYMIDE COMPOSITES Patrik Fernberg, Rise Sicomp The paper investigates how the thin-ply effect can play a role for high temperature composites. Mechanical performance in tension as well as long-term thermal stability are considered.	ADVANCES IN THE BONDLINE CONTROL TECHNOLOGY FOR THE CERTIFICATION OF ADHESIVELY BONDED COMPOSITE REPAIRS Lennert Heilmann, German Aerospace Center (DLR)
1000-1020	2101-2 DESIGN, STRUCTURATION AND RHEOLOGICAL PROPERTIES OF LAPONITE BASED POLYMERIC NANOCOMPOSITES Omar Abakar Adam, UNABA The best Laponite dispersion was obtained from solution prepared samples regardless of the way of protecting the particles PMMA/PEO blends nanocomposites behave as simple polymer nanocomposites at high concentration of PEO	RENEWABLE CARBON Maria Semeniuk,	ELASTIC	COMPOSITES Bruno Vermes, Budapest University of Technology and Economics We introduce and validate a layup optimization process for coupled composites by presenting a case study. Also, we propose methods to mitigate the thermal warping of composites with	ANCE HEATING OF CONTINUOUS FIBER REINFORCED THER- MOPLASTICS Jochen Wellekötter, Institut Für Kunststofftechnik, Universität Stuttgart	MODELING OF FLOW THROUGH RANDOMLY PACKED BEDS OF CYLINDERS & SPHERES: DISPERSION, DEFORMATION AND HEAT TRANSFER (PARTLY AS PRESENTED AT A BECKMAN SEMINAR APRIL 2014) Staffan Lundström, Luleå university of technology	S HYBRID POLYMER COMPOSITES USING MOLECULAR DYNAMICS Krishnamurthy Prasad, Swinburne University	2108-2 CURE KINETICS AND SHRINKAGE MEASUREMENTS IN A FAST CURING EPOXY AMINE RESIN SYSTEM Masihullah Jabarulla Khan, Deakin University Cure kinetics, chemical shrinkage along with CTE measurements for a commercially available fast curing epoxy amine resin system have been reported. This work will provide valuable information for calculation of residual stresses occurring in carbon fibre reinforced composites used in dynamic applications.	Mitchell Jones, RMIT University	2110-2 MORPHING O CARBON FIBRE COMPOSITE USING ELECTROCHEMICAL ACTUATION Ross Harnden, KTH Royal Institute of Technology, Sweden A concept for a structural actuation device is presented and modelled. A carbon fibre laminate is shown to be capable of producing significant geometry changes by exploiting lithium-ion intercalation expansions.	FOR FLEXIBLE UV SENSOR Teahoon Park, Korea Institute of Materials Science	HIGH DENSITY PIEZOELECTRIC SENSING CAPABILITY FOR DETECTION OF IMPACTS IN COMPOSITES	MICROENCAP- SULATED PHASE CHANGE MATERIALS Giulia Fredi, University of Trento	BEFFECTS ON BOLTED COMPOSITE JOINTS SUBJECTED TO PRELOAD Ivanna Pivdiablyk, Ecole Centrale De	
1020-1040	EFFECT OF SURFACE FUNCTIONALIZATION OF GRAPHENE PARTICLES ON THE PROPERTIES OF NANCOMPOSITES Annika Catherine. Ackermann, University of Stuttgart, Institute of Aircraft Design The effect of plasma treatment of graphene particles was evaluated with respect to the characteristics of the used powder material as well as the processability of the produced nanocomposites.	AND CARBONIZA- TION TO NANO-LAY- ERED GRAPHITIC STRUCTURE Mohini Sain, University of Toronto	METACOMPOSITE STRUCTURES	THERMALLY ASSISTED PIERCING MANUFACTURE AND PROPERTIES OF MULTIPLY-PIERCED COMPOSITE Faranak Eghtesadi Bahrami, TWI The comparison of the strength for drilled and thermally assisted pierced (TAP) thermoplastic composite, Carbon Fibre/Polyamide-12. The TAP technique has shown improved strength when compared to the conventional drilling technique.	2105-3 INFLUENCE ; OF POWER ULTRASONIC ON THE IMPREGNATION OF UNIDIRECTIONAI CARBON FIBRES IN CLOSED INJECTION PULTRUSION Frederik Wilhelm, Fraunhofer Research Institution for Casting, Composite and Processing Technology Igcv Implementation of power ultrasonic in the pultrusion process with the aim of improving	L AND AFFORDABLE COMPOSITES Ozden Ochoa, Texas A&m University Life cycle prediction of multifunctional systems introduces new opportunities to address performance, cost and sustainability with minimum environmental impact. 1 Characterization and modeling consequences will be	DEPENDENT ELASTO-PLASTIC CONSTITUTIVE MODEL WITHIN TENSION AND COMPRESSION ASYMMETRY AND ITS APPLICATION TO PREDICT LAMINATES' OFF- AXIS LOADING RESPONSES Buil Ben Anning		2109-3 INVESTIGATING THE MECHANICAL PROPERTIES OF CELLULOSE AND AMORPHOUS CELLULOSE BY MOLECULAR DYNAMICS SIMULATION Ali Khodayari, Ku Leuven	2110-3 MULTI-FUNCTIONAL SHAPE ADAPTABLE COMPOSITE METAMATERIAL FOR AEROSPACE APPLICATIONS Maria Sakovsky, ETH Zurich A novel single- cure procedure for fabrication of complex assemblies of fiber reinforced polymer shells is proposed. It is applied to mechanical metamaterial capable of achieving 60% global deformation showing the potential for use of such assemblies for stiff yet deformable aerospace structures.	NANOCOMPOSITES MANUFACTURED VIA FRONTAL POLYMERIZATION Leon Dean, University of Illinois at Urbana- Champaign	2112-3 MONITORING OF CEMENT HYDRATION USING TERAHERTZ RADIATION Heonsu Kim, Hanyang University	2113-3 CONTROLLED DESIGN OF ROBUST HIERARCHICALLY POROUS AND HOLLOW CARBON FIBRE TEXTILE FOR HIGH- PERFORMANCE FREESTANDING ELECTRODES Quanxiang Li, Deakin University	2114-3 EFFECT OF MOISTURE SATURATION ON THE THERMAL EXPANSION COEFFICIENT OF COMPOSITES Nigel St John, Defence Science and Technology Group Effect of Moisture Saturation on the Thermal Expansion Coefficient of Composites	2115-3 NUMERICAL AND EXPERIMENTAL STUDY OF STRUCTURAL FILM ADHESIVES AND SCARF REPAIR Sridhar Narayanaswamy, Institute of High Performance Computing We present an experimentally validated numerical framework to predict the structural response of repaired scarf joints for varying lay-up and loading conditions.

	Plenary 2	Meeting room 205	Meeting room 206	Meeting room 208	Meeting room 209	Meeting room 210	Meeting room 211	Meeting room 212	Meeting room 213	Meeting room 214	Meeting room 215	Meeting room 216	Meeting room 217	Meeting room 218	
-1110	Coffee break Exhibition hall														
-1250	2201 Nano-composites	2202 Biocomposites	2203 Meta-composite	2204 Liquid composites moulding	2205 Advanced manufacturing and automation	2206 Scott White symposium	2207 Computational and finite element methods	2208 Self-healing	2209 Fracture and damage	2210 Actuation 2: active composites	2211 Bio-inspiration	2212 Structural health monitoring	2213 Ceramic matrix composites	2214 Durability, creep and aggressive environment	
1110-1130	A change of the reinforcing mechanisms has been detected when temperatures are near the glass transition.	Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph Biocarbon was found to be selectively distributed in the nylon-6 phase, in nylon-6/polypropylene blends due to the similarities in polarity. The effects of dispersion and interaction of the biocarbon on thermal-mechanical properties were systematically studied.	ENABLED BY FERROMAGNETIC MICROWIRES Yang Luo, Zhejiang University	2204-1 CURING BEHAVIOR OF ENDO-DICY- CLOPENTADIENE AND DECELERATOR SOLUTION EFFECTS Sung Woong Choi, Gyeongsang National University	2205-1 INVESTIGATION ON THE MELTING OF THE WELD INTERFACE IN CONTINUOUS ULTRASONIC WELDING OF THERMOPLASTIC COMPOSITES Bram Jongbloed, Delft University of Technology Continuous ultrasonic welding is a new promising high-speed joining technique for thermoplastic composites. This study aims at relating the optimum welding time in static welding to the continuous welding speed.	COMPOSITES Jason Patrick, North Carolina State University	CFRP TRANSVERSE FAILURE CONSIDERING NON-LINEAR VISCOELASTIC/ PLASTIC CONSTITUTIVE EQUATION WITH ENTROPY DAMAGE Mio Sato, Tokyo University of Science The proposed model can express the strain behavior of creep and recovery process. In numerical analysis, A FORTRAN program is created to introduce a proposed nonlinear viscoelastic model into matrix resin.	2208-1 INTRALAMINAR TOUGHENED CARBON/EPOXY COMPOSITES EXHIBITING SELF-HEALING CAPABILITIES Everson Kandare, Amit University	IN SITU X-RAY COMPUTED TOMOGRAPHY Jordan French, University of Utah Novel biaxial test method was develope to enablehigh- resolution in situ X-ray CT imagling of tape- laminate composites under complex loading scenarios.	d	MANUFACTURING OF VASCULAR MATERIALS Mayank Garg, University of Illinois Urbana Champaign Conventional vascularization methods for making multifunctional composites are limited by time and energy- intensive processes. Exothermic curing of the host matrix with simultaneous degradation of the sacrificial polymer enables rapid manufacturing of vascular polymers and composites.	and computers. We also demonstrate the possibility of making estimations in complex systems where sensor locations are unknown or where dynamic modeling for system identification may be very complex.	BEHAVIOR OF 3D BRAIDED CERAMIC MATRIX COMPOSITES Xin Jing, Northwestern Polytechnical University	2214-1 HYBRID ENHANCEMENTS INTERFACE AND MATRIX ON FIBRE REINFORCED POLYMER LAMINATES Youhong Tang, Flinders University	
1130-1150	TYPES ON CURE BE- HAVIOR, MORPHOLI- OGY AND MECHAN- ICAL PROPERTY OF NATURAL RUBBER NANOCOMPOSITE FOAM Pollawat Charo- eythomkhajhornchai, Materials Engineering, Faculty of Engineering, Faculty of Engineering, The Additional Properties of Engineering Waterials Engineering Hauterials Hauter	CARBON NANOFIBER NETWORKS FOR HIGH- PERFORMANCE SUPERCAPACITORS Jiayuan Wei, Luleå University of Technology High-performance carbon electrode for supercapacitors derived from renewable lignin were developed. The electrode materials were tested in both conventional two-electrode supercapacitors using liquid electrolyte as well as a solid-state	and conversion as well as unique negative	WETTABILITY ON MACROVOID FORMATION IN VISCOUS-FLUID IMPREGNATION TO WOVEN FIBER BUNDLES Kota Yoshihara, Tokyo University of Science We investigate Effect of wettability on macrovoid formation in viscous-fluid impregnation to	ply edges. Suppression of delamination in composite ply drop-off and free-	Process models that describe the face	Advanced Defense Systems Ltd The tensile response of [0/45/90/-45]2s and [30/60/90/-60/-30]2s IM7/977-3 carbon/epoxy open-hole coupons is simulated using two numerical approaches.	2208-2 A FACILE STRATEGY TO FABRICATE SMART COATING WITH SELF-HEALING AND SELF- REPORTING DUAL FUNCTIONS Shusheng Chen, The Hong Kong University of Science Base on hexamethylene diisocyanate and aggregation-induced emission luminogens, we developed a facile strategy, one-part microcapsules embedded approach, to fabricate a smart coating with autonomous self-healing and self-reporting dual functions.	COATING ON NANOSCRATCH G BEHAVIOR OF SILVER NANOWIRE NETWORKS Byungil Hwang, Chung-ang University	2210-2 DIELECTRIC ELASTOMER SOFT ROBOTICS Livu Liu, Harbin Institute of Technology	2211-2 BIO-INSPIRED SYNTHESIS OF MULTIFUNCTIONAL COMPOSITES WITH SELF-ADAPTABLE MECHANICAL PROPERTIES AND SELF- REGENERATION Sung Kang, Johns Hopkins University We report a multifunctional composite inspired bone and coral reef that can adapt its mechanical properties depending on the loading condition and repair damages.	MONITORING SYSTEM FOR GFRP LAMINATE STRUCTURES Ahmed Shihab Ahmed Al-saadi, The University of Chester	POROUS YTTRIA STABILIZED ZIRCONIA IMPREGRATING WITH SILICA AEROGELS Xiaoyan Wang, Aerospace Research Institute of Material & Processing Technology Properties of porous	A two-step homogenization process was employed to study the ABD stiffness relaxation of thin laminates of interest to NASA for deployable space structure applications and compared to	d d
1150-1210	2201-3 RE-FREE EXCHANGE COUPLED NANOCOMPOSITE MAGNETS Ovidiu Crisan, National Institute for Materials Physics	2202-3 THE INFLUENCES OI PARTICLE SIZES ON PERFORMANCE OF BIODEGRADABLE WOOD PLASTIC COMPOSITES MANUFACTURED FROM LINGO-CELLULOSIC AGRICULTURAL WASTE Tung Nguyen, The Univeristy of Queensland The objective of this research was to evaluate the effects of opening particle sizes and particle load on the performance of wood plastic composites made from entire cotton stalks with Biodegradable polyhydroxyalkanoates	MECHANICAL PROPERTIES OF CARBON FIBER REINFORCED 3D AUXETIC CELLULAR STRUCTURES Li Ma, Harbin Institute of Technology	COMPRESSION Simone Bancora, Ecole Centrale Nantes - Gem We propose a new method for the mesoscale reconstruction of a textile geometry based on simple visual and mechanical data acquisition by means	Center for Advanced Composite Materials This paper investigates the effect of relative humidity and temperature on uncured prepreg characteristics, that	OF SELF-HEALING FIBER REINFORCED COMPOSITES Veronique Michaud, Epfl This is an overview of our research on self-healing structural long fiber reinforced composites, from early attempts with DCPD-Grubbs capsules, to EPA containing capsules, to recent work on healable composites based on	APPLIED TO PROBLEMS OF FINITE DEFORMATION Elena Sitnikova, University of Nottingham	2208-3 FRACTURE PROPERTIES OF MENDABLE Z-PINNED COMPOSITES Thomas Loh, RMIT University	2209-3 DAMAGE CHARACTERISATIO IN TEXTILE COMPOSITES: A COMPARISON BETWEEN NEUTRO AND X-RAY TOMOGRAPHY Garth Pearce, UNSW Sydney	3210-3 3D PRINTING OF LIQUID CRYSTAL ELASTOMERS AS SOFT ACTUATORS FOR MULTIFUNCTIONAL DEVICES H. Jerry Qi, Georgia Tech	2211-3 SELF-HEALING CFRP COMPOSITES WITH HIGH THERMAL STABILITY Henry Sodano, University of Michigan	OF BRAIDED COMPOSITE TUBES WITH OPTICAL FIBRES AND PIEZOELECTRIC SENSORS Neha Chandarana, The	2213-3 BRITTLE FAILURE ANALYSIS OF UNI-DIRECTIONAL CERAMIC MATRIX COMPOSITE PLIES UNDER TRANSVERSE TENSILE LOAD: A COMPUTATIONAL IMICROMECHANICS APPROACH Pydi Yeswanth Sai, Indian Institute of Technology, Indore	2214-3 EVALUATION OF CREEP-LESS COMPOSITES USINITG-LESS EPOXY RESIN AS THE MATRIX Hirofumi Nishida, Kanazawa Institute of Tehnology Our results strongly suggested the possibility of producin a creep-less composit material with good mechanical properties by using Tg-less epoxy resin modified with rubber nano-particle at the matrix.	g e

TUESDA	Y 13 AUGUST															
Time	Plenary 2	Meeting room 205	Meeting room 206	Meeting room 208	Meeting room 209	Meeting room 210	Meeting room 211		Meeting room 212	Meeting room 213	Meeting room 214	Meeting room 215	Meeting room 216	Meeting room 217	Meeting room 218	Meeting room 219
1210-1230	2201-4 STRENGTHEND AND TOUGHENED EPOXY NANOCOMPOSITES Hongbo Gu, Tongji University		SINTERING Qingsong Wang, Beihang University The Compressive mechanical properties of 3D cross chiral structures are investigated with the	2204-4 EXPERIMENTAL DESCRIPTION OF DRAPING EFFECTS AND THEIR INFLUENCE ON STRUCTUAL BEHAVIOR OF FIBER REINFORCED COMPOSITES Eckart Kunze, Technische Universität Dresden - Institute of Lightweight Engineering and Polymer Technology Comparison of experimentally determined draping effects (fiber waviness and transverse compression) shows good agreement with draping simulation results of specimen with waviness confirmed observed failure during mechanical testing,	2205-4 DAMAGE TO CARBON FIBRES DURING RADIAL BRAIDING Jacquelynn Xue Ting Tian, RMIT University We investigated the effects of the automated radial braiding process on the damage, shape, tensile strength and stiffness of carbon fibre tows.	TOUGHNESS IN TOPOLOGICALLY INTERLOCKED CERAMICS Mohammad Mirkhalaf, The University of Sydney	2207-4 A FINITE ELEMENT MODEL FOR DISCONTINUOUS AND RANDOMITO ORIENTED STRAND THERMOPLASTIC CFRP Takuya Sumiyama, Research Center, TOYOBO CO., LTD. The objective of this study is to propose a simple finite element (FE) model without consideration of the shape of strands explicitly. As the results of FE analysis, the mechanical flexural behavior agreed well with experimental results for a variety of specimen.			FREQUENCY SELECTION FOR REPRODUCIBLE FATIGUE ASSESSMENT OF COMPOSITES Daniel Hülsbusch, TU Dortmund University, Department of Materials Test	2210-4 4D PRINTING OF MULTIFUNCTIONAL MATERIALS Sampada Bodkhe, ETH Zurich 3D printing serves as an essential tool towards fabricating customized implants catering to individual needs. Where implant materials must conform to stringent compatibility norms, adding a different material for each function entails cumbersome and expensive testing, and at the same time increase the risk and discomfort to the user.	2211-4 TOWARDS SELF- HEALING AND SELF-SENSING USING OPTICA WAVEGUIDES IN MICROVASCULAR COMPOSITES William Martin, North Carolina State University	2212-4 A LOW-COST FLOW FRONT MONITORING SYSTEM Andreas Damm, Robert Bosch GmbH In this work, a MEMS sensor network is embedded in a textile to detect the flow front of a resin transfer molding process. Both acceleration and temperature data is validated and afterwards applied to an existing setup.	INVESTIGATION OF DAMAGE IN ANGLE-INTERLOCKED CERAMIC MATRIX COMPOSITE UNDER IN SITU LOADING Hrishikesh Bale, Carl Zeiss Microscopy Inc. We present here, in-situ tensile test results collected on a laboratory x-ray microscope which	OPTIMIZATION OF CHOPPED GLASS FIBER REINFORCED POLYDICYCLOPENTADIENE COMPOSITES Ji Ho Jeon, Seoul National University Using Long Fiber Spray-up molding process to fabricate chopped GF/p-DCPD composites	
1230-1250	2201-5 EFFECT OF CARBON NANOTUBE BULK MORPHOLOGY ON THE INTERLAMINAR FRACTURE TOUGHNESS OF CFRP LAMINATES Stephen C. Hawkins, Queen's University Belfast		2203-5 CRYOGENIC IMPACT PROPERTIES OF GLASS REINFORCED POLY-DICYCLOPEN- TADIENE COMPOS- ITES Jongmin Choi, Pusan National University Performance evalua- tion of pDCPD impact property at cryogenic temperature and effect of decelator amount		2205-5 HIGH QUALITY AUTOMATED HONEYCOMB POTTING WITH ACTIVE PRESSURE CONTROL Martin Hamisch, Hamburg University of Technology This work compares two control concepts for automated honeycomb potting with regard to quality, repeatability. Potting pressure has been found to be the key target value.		2207-5 A DYNAMIC SPRING ELEMENT MODEL FOR THE PREDICTION OF LONGITUDINAL FAILURE OF POLYMER COMPOSITES Rading Tavares, Faculty of Engineering of University of Porto A dynamic spring element model is used to study tensile failure in polymer composites and understand the fibre clustering process and the damage mechanisms driving failure.		2208-5 NOVEL CYCLIC OLEFIN COPOLYMER/ EPOXY BLEND FOR THERMAL MENDING OF EPOXY IN CARBON FIBER REINFORCED COMPOSITES Haroon Mahmood, University of Trento	2209-5 AN ADAPTIVE DISCRETE- SMEARED CRACK (A-DISC) MODEL Tong-Earn Tay, National University of Singapore	2210-5 GRADIENT MATERIALS INTERFACE FOR HIGH-TEMP SENSOR MODULES Ajit Roy, U. S. Air Force Research Laboratory		DISTRIBUTED FIBRE OPTIC SENSORS Claire Davis, Defence Science and Technology Group This paper describes an experimental investigation into the use of continuous fibre gratings to detect and characterise material inhomogeneity and damage in a range of fibre reinforced	FOR FRICTION IN CRACKS UNDER COMPRESSION AND SHEAR IN AN ANISOTROPIC DAMAGE MODEL AND APPLICATION TO CMCS Emmanuel Baranger, LMT, ENS Paris-saclay, CNRS, Université Parissaclay	Queensland	
1250-1350	Lunch Exhibition hall															
1300-1345	DMTC lunch symposic industrial supply chair Martin Veidt, DMTC Pro	ns.	composite materials to a	-	•		tor and its	мтс								
1350-1435	Plenary 2 PLENARY LECTURE: S Jinsong Leng, Harbin Ins Plenary 2		MER COMPOSITES AN	D 4D PRINTING TECHN	IOLOGIES: FROM THE	AEROSPACE TO BIOMI	EDICAL APPLICATIONS									
1435-1445	Move to concurrent ses															
1445-1535		P2302 Damage tolerance durability, creep and aggressive environment	P2303 Sandwich structures and materials	P2304 Design and manufacture for multifunctionality and machining of composites	P2305 Energy harvesting and storage	P2306 Fracture and damage	P2307 Joints		P2308 Composite structures	Altair industry session	P2310 Civil engineering and composite materials: route to impact	P2311 Non-destructive evaluation	P2312 Textile-based composites	P2313 Smart composite structures	P2314 Dynamic properties & fracture	Fill Gesellschaft industry session
1445-1450	RESIN MATRIX COMPOSITES Xiaojing Wang,	P2302-1 MULTI-MODE VIBRATION DETECTION FOR DELAMINATION OF CARBON FIBRE COMPOSITE PLATE Jie Pu, University of Chester	OF CORRUGATED CORE SANDWICH PANELS - EFFECT	BIC COATINGS FOR ENHANCED FIBRE COMPOSITE MATE-RIALS Puneet Garg, Australian National University Polyurethane poly (methyl methacrylate) interpenetrating polymer network and FSiO2 coatings were used to fabricate superhydrophobic fiber	We prepare a multifunctional flexible nanofiber composite which both has piezoelectric and shape memory effect. This is an advantage for applications of energy harvesting in complex structures.	The microstructural characteristics and fracture mechanisms of in-situ TiB2/2024 composite were studied. The plastic properties of the matrix were obtained by reverse analysis. The damage and	P2307-1 INVESTIGATION OF GEOMETRICAL AND COMPOSITE MATERIAL PARAMETERS FOR TENSION- ABSORBING BOLTED JOINTS Jazib Hassan, University of Limerick Development of a novel composite bolted joint namely, tension-absorbing joint, that enhances the crashworthiness of lightweight transportation structure by avoiding the bolt fracture and allow the extensive crushing of the composite material.		P2308-1 STIFFENED COMPOSITE PARTS BY RESIN INFUSION PROCESS FOR AIRCRAFT APPLICATION Oyoung Choi, Kolon Dacc Composite	Altair industry session RESEARCH MEETS PRACTICE - ALTAIR'S HOLISTIC APPROACH FOR THE COMPOSITE DESIGN, SIMULATION AND OPTIMISATION PROCESS Markku Palanterä, Director of Global Composites Business Development Sponsored by	P2310-1 BEHAVIOR OF GFRP BARS SUBJECTED TO DYNAMIC LOADING Farid Abed, American University of Sharjah The paper studies the behavior of GFRP bars under impact loading using the drop hammer test. The tests were conducted on GFRP specimens with different diameters at various loading rates.	ASSESSMENT OF COMPOSITE DELAMINATION BUCKLING Cedric Antolis, Rmit University A laminate coupon containing an artificial delamination is subjected to uniaxial compressive loads to induce localised delamination buckling		P2313-1 HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM Saeed Fazeli, Australian National University	Taeseong Choi, Unist	Wilhelm Rupertsberger Sponsored by

ENTIFIC

PROGRAM

51

ENTIFIC

PROGRAM

53

ENTIFIC

PROGRAM

55

TUESDA	Y 13 AUGUST														
Time	Plenary 2	Meeting room 205	Meeting room 206	Meeting room 208	Meeting room 209	Meeting room 210	Meeting room 211	Meeting room 212	Meeting room 213	Meeting room 214	Meeting room 215	Meeting room 216	Meeting room 217	Meeting room 218	Meeting room 219
1630-1650	2401-2 FABRICATION OF HIERARCHICAL POLYMER NANOCOMPOSITES WITH CAPILLARY- DENSIFIED ALIGNED CARBON NANOTUBE REINFORCEMENT Ashley Kaiser, Massachusetts Institute of Technology This process- structure study of hierarchical polymer nanocomposites (here millimeter-tall patterned, capillary- densified aligned carbon nanotubes in aerospace-grade epoxy) presents multi-scale structural characterization to investigate high- density nanotube confinement effects on nanotube-polymer interactions.	BIOCOMPOSITES UNDER VARIOUS ENVIRONMENTAL CONDITIONS Victor Gager, Univ.	2403-2 VIBRATION AND ACOUSTIC PROPERTIES OF MULTIFUNCTIONAL SANDWICH COMPOSITES WITH EMBEDDED LITHIUM-ION POLYMER BATTERIES Joel Galos, RMIT University This paper presents an experimental and numerical study into the effect of embedding (LiPo) batteries into sandwich panels on the vibration and acoustic properties.	processes for validation and certification - an industry perspective Dr Matthew Jevons, MT Aerospace AG, Germany Partnership between academia and industry on improving composite regulations and certification processes Dr Enrique Garcia, National Composites	Hamidreza Yazdani Sarvestani, Mcgill University & National Research Council Canada	OF MULTIFUNCTIONAL COMPOSITES Daniel Therriault	ELEMENT METHOD FOR ANALYZING PROGRESSIVE INTERFACE FAILURE OF LARGE-SCALE CFRP MODELS Taichi Yamaguchi, The University of Tokyo We developed parallel finite element analysis (FEA) software, that can simulate failure of large-scale CFRP models including interfaces. We validated the software by simulating double cantilever beam (DCB)	2408-2 NUMERICAL MODELLING OF BIAXIAL CARBON FIBER BRAIDS CONSIDERING PROCESS VARIBILITIES Ruben Czichos, Institut of Aircraft Design, University of Stuttgart	2409-2 THE INFLUENCE OF NONWOVEN INTERLEAF ARCHITECTURES ON THE IMPACT PERFORMANCE OF COMPOSITES Phys Archer, University of Manchester Presented is an investigation of the influence of the structural properties of non woven interleaves on the damage resistance and damage toughness of CFRP composites, evaluated through impact and compression tests. Results show that damage resistance increases with the increase of the areal density of the interleaf.		including resistors, inductors, capacitors are created using structural polymer	OF POLYMERIC COMPOSITES Meihong He, Beihang University A new fabrication of freestanding graphene fiber sensors by laser-induced graphene technology was	of a CMC specimen, from manufacturing to ultimate failure. Results will be presented on the methods to image and quantify the evolution of	THE MATERIAL PROPERTIES OF COMPOSITES AT HIGH STRAIN RATES Lloyd Fletcher, University of Southampton Full-field displacement measurements are spatially differentiated to obtain strain fields. Temporal differentiation gives the acceleration fields which are related to the applied load. Combining these measurements gives	WEALTH: SUPER HARD CARBON MICROTUBE DERIVED FROM COTTON WASTE FOR COMPOSITE APPLICATIONS Kamyar Shirvani Moghaddam, Deakin University
1650-1710	2401-3 CAPILLARY- ENHANCED NON-AUTOCLAVE COMPOSITE MANUFACTURING BASED ON NANOPOROUS NETWORK Jeonyoon Lee, MIT The capillary-driven manufacturing technique presented here enables traditional autoclave- required prepreg to be processed under vacuum-only conditions without an autoclave or any modifications to the prepreg system.	2402-3 ALIGNED POLY(LACTIC ACID)-BASED NANOCOMPOSITES REINFORCED WITH IN-SITU DISPERSED CELLULOSE NANOCRYSTALS Shiyu Geng, Lulea University of Technology The present work reports strong and tough aligned poly((actic acid)-based anocomposites with well-dispersed cellulose nanocrystals achieved by the combination of three novel processing methods, i.e. in-situ emulsion polymerization, liquid- assisted extrusion and solid-state drawing.	Swinburne University of Technology Composite structures in high-performance applications are often exposed to damaging external impacts, deformations and changes in environmental conditions during service. Smart structural composites are multifunctional structural materials which are capable of strain, stress, damage or temperature sensing	1600 and 1830	2405-3 DESIGN, MANUFACTURE AND TESTING OF 3D PRINTED CONTINUOUS FIBRE REINFORCED COMPOSITE LUG STRUCTURES Peng Zhuo, University of Nottingham	University of Delaware	SIMULATION OF CFRP UNDER LOW VELOCITY IMPACT Akinori Yoshimura, Nagoya University	2408-3 HYSTERETIC BEHAVIOUR MODELLING OF WOVEN FABRIC UNDER LARGE STRAIN Yan Denis, INSA de Lyon PhD student at LaMCoS laboratory in France completing the final year of its studies. Currently working on material behaviour to modelise new composite forming strategy such as incremental processes	2409-3 FAILURE ANALYSIS OF FIBRE METAL LAMINATE JOINTS Yong Du, Northwestern Polytechnical University This paper aims to study the failure strength and failure mode of Fiber Metal Laminates in single- bolted single-lapped joint.	GRANULAR FLUID COMPOSITES FOR VARIABLE	2411-3 COMPUTATIONAL MECHANICAL METAMATERIALS Jonathan Hopkins, University of California Los Angeles (UCLA)	2412-3 ULTRASENSITIVE STRAIN SENSORS FOR STRUCTURAL HEALTH MONITORING USING A HIGHLY ALIGNED CARBON NANOTUBE WEB Sandeep Kumar, Queen University Belfast	ANALYSIS OF MULTIPLE CERAMIC MATRIX COMPOSITE	HOPKINSON BAR TECHNIQUE WITH DIC Amos Gilat, The Ohio State University The split Hopkinson bar technique is used for high strain rate testing of T800/F3900 composite in compression and tension. Digital image correlation is used for measuring the strain on the surface of the specimen.	2415-3 MANUFACTURING PROCESS OF GRAPHENE REINFORCED AL COMPOSITE AND THEIR PROPERTIES Yongbum Choi, Graduate School of Engineering, Hiroshima University
1710-1730	2401-4 INTERLAMINAR SHEAR REINFORCEMENT OF UNIDIRECTIONAL AEROSPACE LAMINATES WITH RADIALLY ALIGNED CARBON NANOTUBES Richard Li, Massachusetts Institute of Technology	JUTE FIBER/VINYL ESTER COMPOSITES Jaecheol Kim, Changwon National University	S POLYMER (CFRP) COMPOSITES FOR MULTIFUNCTION- ALITY Raquel Santos, Inegi- Institute of Science and Innovation In Mechanical and Industrial Engineering		2405-4 ENHANCING MECHANICAL PROPERTIES OF 3D PRINTED PARTS BY SPRAVING CELLULOSE NANOCRYSTALS Amir Asadi, Texas A&m University	Mostafa Yourdkhani, Colorado State University	2407-4 NUMERICAL ASSESSMENT OF CAPILLARY PRESSURE BY FLOW SIMULATION IN A FIBROUS MEDIUM Hong Nhan Vo, Ecole Des Mines	2408-4 STUDY ON BIAXIAL AND CYCLIC TENSILE PROPERTIES OF FEVE REINFORCED MEMBRANES Jinhua Jiang, Donghua University	2409-4 BIAXIAL STRESS TESTS FOR UNIDIRECTIONAL CFRP LAMINATES Keita Goto, Department of Aerospace Engineering, Nagoya University Biaxial stress tests of unidirectional CFRP laminates were performed to investigate failure criteria under fiber longitudinal tensile- fiber transverse compressive biaxial stress state.	2410-4 DEVELOPMENT OF ADAPTIVE FIBER REINFORCED PLASTICS BY OPEN REED WEAVING TECHNOLOGY Moniruddoza Ashir, Technische Universität Dresden An adaptive FRP was developed with shape memory alloy being structurally integrated into reinforcing fabrics using open reed weaving technology. In a subsequent step, the thermomechanical characterization of adaptive FRP was executed.	RAYS OF MAGNETIC BEADS USING COM- POSITE HETERO- STRUCTURES WITH PERPENDICULAR MAGNETIC ANISOT- ROPY (PMA) Christopher Lynch, University of California Riverside	MECHANICAL FORCES BY MULTIDIRECTIONAL SENSORS Shuhua Peng, University of New South Wales	2413-4 MICROSTRUCTURE, MECHANICAL PROPERTIES AND OXIDATION RESISTANCE OF C/C-SIC-ZRB2 COMPOSITES Wenbo Han, Harbin	INFLUENCE DURING CURING ON THE MECHANICAL PROPERTIES OF EPOXY RESIN COMPOSITES AT HIGH STRAIN RATES Moritz Kurkowski, Chair of Plastics Technology, TU Dortmund University This study shows a	TREATMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HYBRID PARTICULATES REINFORCED AL-ALLOY MATRIX COMPOSITES Jianyu Li, State Key Lab of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, China

59

WEDNES	SDAY 14 AUGU	ST													
Time			Meeting room 206	Meeting room 208	Meeting room 209	Meeting room 210	Meeting room 211	Meeting room	Meeting room 213	Meeting room 214	Meeting room 215	Meeting room 216	Meeting room 217	Meeting room 218	Meeting room 219
0800-0805 0805-0850	Day 3 Welcome & Annou PLENARY LECTURE: FU		FOR CARRON FIRRE C	OMPOSITES: A IOURN	JEV THROUGH THE VA	LUE CHAIN Bronwyn Fo	y Swinhurne University	Australia							
	Plenary 2							7.00.0.0.0							
0850-0900 0900-1040	Move to concurrent sessi	ions	3103 Resin and polymers	3104 Liquid composites	3105	3106 Composite structures	3107 Multiscale modelling	3108 Textile-based	3109 Fracture and dama	3110 Defence	3111 Biomedical	3112 Testing methods	3113 Hybrid composites	3114 Fatigue	3115 Metal matrix
	Nano-composites			moulding				composites	Fracture and dama	Deletice	Biorriedical	resting methods	Hybria composites	raugue	Composites
0930-0940	KEYNOTE 2: MODELIN Paul Davic KEYNOTE 3: INTERFAL Stepan Lo, KEYNOTE 4: CHARAC* KEYNOTE 5: AN INTEG Marino Qu Move to concurrent sessi	Kim, University Science NG OF IMPACT DAMA dson, Michigan Universit CIAL DAMAGE IN FIB IMOV, KU Leuven (Meeti TERISATION AND MC GRATED APPROACH 1 laresimin, Universita dec	& Technology (Plenary 2) GE AND COMPRESSIO ty (Meeting room 211) THE REINFORCED COMING room 212) DOELLING OF STRUCTU TO DESIGN AND MONITY of Studi di Padova (Meetin	POSITES MODELLED I URAL BATTERY COMPORITE STRU 1g room 219)	AMINATED COMPOSI N THE FRAMEWORK O OSITES Lief Asp, Chalmu ICTURES UNDER IN-SI	TE AEROSPACE STRUC OF FINITE ELEMENTS Wers University (Meeting ro ERVICE FATIGUE LOAD	CTURES //TH EMBEDDED REGI tiom 213) INGS		1000		Tana i	laus :	Taus :	Taux.	
0940-1000	atol-1 THERMAL PROPERTIES OF UNSATURATED POLYESTER COMPOSITES FILLED WITH MODIFIED SILICA AEROGEL Muhamad Azizi Mat Yajid, Universiti Teknologi Malaysia Unsaturated polyester resins (UPR) are widely used in building and construction industries such as wall panels, and flooring. For the design of these structures, thermal properties such as thermal conductivity and stability are among		Jaworski Capricho, Swinburne University of Technology We report the development of stable organic radicals as a polymeric framework for functional	DEFORMATION OF A MULTI-LAYERED FIBER PREFORM IN LIQUID COMPOSITE MOLDING PROCESS Dona Gi Seona, Pusan	OF COMPOSITE SANDWICH PANELS FOR BROADBAND SOUND ABSORPTION Filippo lervolino, Polytechnique Montréa This work presents single and multi- material Fused Deposition Modeling	Sung Joon Kim, Korea Aerospace Research Institute	3107-1 MODIFIED MORI-TANAKA METHODS FOR DAMAGE MODELLING OF SHORT FIBRE REINFORCED COMPOSITES Atul Jain, Indian Institute of Technology Kharagpur	A NUMERICAL STUDY OF THE EFFECT OF DRAPING ON 1 MECHANICAL PROPERTIES OF 3D WOVEN COMPOSITES loannis Topalidis University of Bris (ACCIS) A modelling fran is developed and compared to experimental dat towards capturir effect of draping mechanical prop of 3D woven lay layer composites	PHYSICALLY BAS FAILURE THEORI Shuquang Li, The University of Nottingham The University of Nottingham The University of Nottingham	AND MESOSCALE MODELING ED OF TEXTILE	Rodríguez, Centro de Investigación en Nanomateriales Y Nanotecnología (CINN CSIC-UNIOVI-PA)	BEHAVIOR OF CF MAT-TYPE THERMOPLASTIC COMPOSITES Yuki Kamei, Shimadzu Corporation	3113-1 IONIC CONDUCTIVITY ANI YOUNG'S MODULUS OF SOLID POLYMER ELECTROLYTES FOP SUPERCAPACITOR Suk Jin Kwon, Korea Institute of Materials Science	GLASS FIBERS R REINFORCED	3115-1 DEFORMATION BEHAVIOR OF ALUMINUM ALLOY MATRIX COMPOSITES REINFORCED WITH FEW-LAYER GRAPHENE Seeun Shin, Sunchon National University
1000-1020	the important criteria. 3101-2 ALIGNMENT AND REINFORCING POTENTIAL OF MULTIFILAMENT CNT FABRICS Anastasiia Mikhalchan, IMDEA Materials Institute The presentation is focused on CNT fibres and multifilament fabrics and the relationship between CNT alignment and mechanical and reinforcing potential for structural composites.		3103-2 TOUGHNESS OF EPOXY POLYMERS CURED AT HIGH RATES Declan Carolan, Fac Technology	3104-2 SELF-SEALING TOOL CONCEPT FOR RTM- PROCESSES Tim Stallmeister, Universität Paderborn	CONTINUOUS FIBRE COMPOSITES: VALIDATION OF	HYBRID CARBON FIBRE LAMINATE	3107-2 COMPUTATIONAL CONTINUA MODELS OF COMPOSITE CURYUE BEAMS Dinghe Li, Civil Aviation University of China	OF THE WRINK BEHAVIOUR OI BIAXIAL NON- FABRIC DURIN FORMING Verner Viisainen, University of Cambridge The wrinkling behaviour of a biaxial NCF over benchmark geor is characterised through forming experiments with	COMPOSITE JOIN EFFECT OF FIBEE MATRIX ADHESIC Xuekuan Li, Beihang University This work focus on the influence of stainless steel mesis ize on the failure modes of resistanc welded thermoplas composite joints.	TS: SCARF REPAIRS Riley Mitchell, N University of Southern Queensland	The g-GO/PLLA nanocomposites show good shape memory effect and antibacteria properties, which suggest that these	Benedikt Lux, Swinburne University Technology This study includes a omparison of established and novel shear testing devices and an investigation of non-crimp fabrics or with different fiber	Institute of Technology of	II FRACTURE TOUGHNESS OF WOVEN COMPOSITES Rowan Healey, Monash University A three-dimensional finite element model was developed to determine the mode II fracture toughness of a woven composite, validated	The authors presented three different methods of the in situ fabrication of metal matrix composite via casting process: composite layer, local composite reinforcement and cast composite reinforcement end cast discomposite reinforced.
1020-1040	3101-3 SYNERGETIC ENHANCEMENT OF THERMAL CONDUCTIVITY BY ALUMINA NANOWIRES IN EPOXY COMPOSITES CONTAINING MICRO FILLERS Kazuaki Sanada, Toyama Prefectural University			3104-3 INFLUENCE OF DISSOLVED GASSES IN EPOXY RESIN ON RESIN INFUSION PART QUALITY Sam van Oosterom, Center for Advanced Composite Materials - University of Auckland	METALLIC FORCE TRANSMISSIONS IN FIBRE REINFORCED THERMOPLASTICS Arne Kunze, Leibniz Institute for Materials		3107-3 PROCESS-INDUCED MICROSTRUCTURE DURING COMPRESSION MOLDING OF HIGH FIBER VOLUME FRACTION SHEET MOLDING COMPOUND Francois Mahe, University of Delaware A new formulation is proposed to describe the evolving multi- scale microstructure and the viscous flow behavior during SMC compression molding.	MODELING FO PREDICTING TO VISCOELASTIC BEHAVIORS OF A BEHAVIOR OF	E LONGITUDINAL TENSILE FAILURE STATISTICS IN UNIDIRECTIONAL COMPOSITES ACCOUNTING FOR MATERIAL VARIABILITY Fabio Malgioglio, Siemens Industry Software NV The longitudinal tensile properties of unidirectional composites and the scatter are predicte with a multi-scale model, including th material variability.	ir d	3111-3 EFFECT OF CROSS- LINKING CONDITIO ON MECHANICAL PROPERTIES OF OSTEONECTIN- COATED HAP/ COLLAGEN Mototsugu Tanaka, Kanazawa Institute of Technology	3112-3 RELATIONSHIP	MATERIAL WITH CF SHEETS WITH MICRO GLASS BALLOON Jakuto Omura, Graduate School of Fukushima university	was redesigned in CFRP and the fatigue behavior of CFRP had to be tested in a very	PARTICLES/CU COMPOSITES PREPARED BY POWDER METALLURGY METHOD Bing Tian, Harbin Engineering University Microstructure, phase
1040-1110	Coffee break				<u> </u>	<u> </u>	<u> </u>		ides computations.			<u> </u>	<u> </u>		
	Exhibition hall														

evolving threats.

63

WEDI	IESDAY 14 AUG I	UST													
1125-1130	CHARACTERIZATION OF MODIFIED POL- YVINYL ALCOHOL/ SODIUM ALGINATE HYDROGEL Jianle Gong, Institute o.	BOLTED LAP-JOINTS : EXPERIMENTAL VS . NUMERICAL TESTS f Benoit Montagne, Institut Clément Ader	*invitation only event*	P3204-4 3D PRINTING OF CONTINUOUS SIZED CARBON FIBER REINFORCED PAG COMPOSITES Tengfei Liu, Xi'an Jiaotong University A sizing treatment process is successfully applied to improve the interfacial performance and mechanical properties of 3D printed continuous carbon fiber reinforced nylon composites.	AND MECHANICAL EXPERIMENTS FOR CFRP Seonghun Kwak, Gyeongbuk Hybrid Technology Institute This study saved time and money because it was able to carry out the permeability coefficient experiment and the mechanical	MANUFACTURING OF AEROSPACE- GRADE THERMOPLASTIC COMPOSITES Frederick Daso, Massachusetts Institute of Technology This work presents the first application of Out-of-oven (OoO) heating to producing carbon fiber reinforced thermoplastic specimens, which are comparable or better than their conventionally hot-press produced laminates.	The addition of short carbon fiber at 25 wt% in the polybenzoxazine composite showed the optimal friction	P3208-4 REDESIGN AND OPTIMIZATION OF THERMAL PRO- TECTION SYSTEM FOR ATMOSPHERIC REENTRY Guokai Han, Harbin Institute of Technology In this work, thermal behavior of a lightweight carbon phenolic ablator and a hybrid thermal protection structure ha been analyzed based on the established mathematical model.	OF GLASS AND SELFREINFORCED POLYPROPYLENE Farzaneh Hassani, Queen's University Belfast	P3210-4 EFFECTS OF PROCESS CONDITIONS ON AEROSPACE GRADE EPOXY/ CABBON FIBRE COMPOSITE PROPERTIES Matt Jennings, School of Engineering, Deakin University It was found that when using isostatic pressure when curing aerospace composites, the interfaminar shear strength and the internal and surface porosity was comparable to Autoclave cured samples.	P3211-4 THE DEFORMATION AND FAILURE RESPONSE OF ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE COMPOSITE TO LOCALIZED BLAST LOADING Long Nguyen, Defence Science and Technology Group Experiments were conducted to study the response of UHMW-PE composite to localised blast loading. The rupture threshold, deformation and failure mechanisms of the material was investigated in this work.	BASED HYBRID POLYPROPYLENE COMPOSITES: AN INSIGHT INTO THERMAL PROPERTIES Rupam Gogoi, Indian Institute of Technology Roorkee, India (IIT Roorkee) Polypropylene (PP) composites were prepared by incorporating short bamboo fiber (SBF)	Altair industry workshop RESEARCH MEETS PRACTICE - APPLYING MULTISCALE MODELING AND OPTIMIZATION IN COMPOSITES ENGINEERING Markku Palanterā, Director of Global Composites Business Development This workshop will run for 90 minutes Sponsored by Altair CONTINUED	P3214-4 OPTIMIZING THE MICROSTRUCTURE AND MECHANICAL BEHAVIORS OF IN-SITU TIC-I'/ NI COMPOSITES BY SUBSEQUENT THERMAL TREATMENT Wengiang Hu, Beijing Jiaotong University	Mobility between Academia and Industry Isabelle Paris, Bombardier Bridging the gap between education and employment Tony Belcher, Boeing Modernising Composites Regulations Ole Thomsen, Bristol University Increasing access fc SMEs to internationare research Matt Jevons, MT Aerospace
1130-1135	and temperature on th	UNI-DIRECTION- AL COMPOSITE PLY - COHSEIVE ELEMENTS & A DUCTILE FRACTURE APPROACH Akash Sharma, IIT Indore The failure behavior of a uni-directional (UD) carbon fiber reinforced epoxy composite ply subjected to		menting the process of pre-impregnation and laser preheating was studied for CCF/PEEK	WETTABILITY ON IMPREGNATION PROCESS OF VISCOUS FLUID TO WOVEN FIBER BUNDLES Atsuki Mizuno, Tokyo University of Science We investigated the effect of wettability on impregnation process of viscous fluid to woven fiber bundles or resin transfer molding	COMPOSITES WITH MODIFIED CARBON FIBERS FOR LIGHTNING STRIKE PROTECTION Anchalee Duongthipthewa, The Hong Kong Polytechnic University New lightning strike protection (LSP) system was fabricated	P3207-5 WEAR PROPERTIES OF PAN- AND PITCH- BASED CARBON FIBER REINFORCED PLASTICS WITH SIC-NANOPARTI- CLES Shigenori Inoue, Doshisha university Friction tests and SEM observations were conducted to investigate the wear characteristics of PAN- and pitch-based carbon fiber reinforced plastics with SiC- nanoparticles.	P3208-5 EXPERIMENTAL AND SIMULATION STUDY OF GFRP WITH LOCAL FIBRE DEFLECTION UNDER BEARING LOADS Lars Thorsten Helft, Clausthal University of Technology	R PROPERTIES, FLAMMABILITY AND THERMAL		P3211-5 ANALYTICAL AND EXPERIMENTAL STUDY ON HIGH- TEMPERATURE HIGH-VELOCITY			P3214-5 EFFECT OF TA ADDITION ON MICROSTRUCTURES AND ROOM TEMPERATURE FRACTURE TOUGHNESS OF THE NB-16SI-20TI- 5AL ULTRAHIGH TEMPERATURE ALLOY Wenyuan Long, Nanchang Hangkong University	This session aims to debate topics that cross between academia and industry in a close and less formal environment. Come an join our animators as we discuss key topics and identify ways forward. Each animator will represent a topic and visitors can move between individual topics or stay with one that particularly interests them.
1135-1140	P3201-6 THE INFLUENCE OF DIFFERENT POWDE IMPREGNATION PROCESSES ON THE PROPERTIES OF L-SHAPED WOVEN FABRIC REINFORCED PEEK COMPOSITES BY HOT STAMP FORMING Hansong Liu, Beihang University	MECHANICAL PROPERTIES OF CONTINUOUS GLASS FIBER REINFORCED POLYPROPYLENE SANDWICH PANELS Yiliang Sun, Beihang University		P3204-6 DEVELOPMENT OF A TEST BENCH FOR FUSED FILAMENT FABRICATION Alexander Matschinski, Technische Universität München	FLOW VISUALISATION STUDY OF THE WET COMPRESSION MOULDING PROCESS Balaji Muthuvel,	P3206-6 PHOSPHATE FUNCTIONALIZED GRAPHENE OXIDE AS ADSORBENT FOR THE REMOVAL OF PB(II) FROM AQUEOUS SOLUTION Daniel Gang, University of Louisiana At Lafayette	P3207-6 FATIGUE LIFE PREDICTION OF EPOXY COATING ON COMPOSITES SUBJECTED TO WATERDROP IMPACT Ameya Kaore, Sardar Vallabhbhai National Institute of Technology, Surat This paper presents a finite element model to predict the fatigue life of the epoxy coating on S-glass/epoxy composite against raindrop impact. The rainfall data for Mumbai region in India is used to simulate the fatigue loading. This model can be used to predict the fatigue life of wind turbine coatings subjected to rain erosion.	P3208-6 DAMPING OPTIMIZATION OF LAMINATED PLATES BASED ON COMPLEX MODULUS APPROACH Masaki Kameyama, Shinshu University This paper deals with the damping characteristics of symmetrically laminated plates. The concept of complex modulus and that of lamination parameters are introduced, where the complex stiffness invariants are newly proposed in this paper.	OF ZIF-67 AND COBALT-NICKEL LAYERED DOUBLE HYDROXIDE AS ELECTROCATALYST FOR HIGHLY EFFICIENT OXYGEN EVOLUTION REACTION Feng Li, Beijing University of Chemical Technology A three-dimensional CoNiAl-LDH/ZIF- 67 nanocomposite exhibited excellent oxygen evolution	University The effects of altering and optimizing the stacking sequence of CFRP laminates as a method to mitigate the out-of-plane thermal deformation due to fiber orientation error of space-based CFRP reflectors was investigated.		NANOCOMPOSITES WITH PLASTICIZER		P3214-6 SIMULATION OF THERMAL CONDUCTIVITY FOR TITANIUM BORIDE PARTICLE DISPERSED ALUMINUM COMPOSITES Gen Sasaki, Hiroshima University	

PROGRAM

67

WEDNE	SDAY 14 AUG														
Time 1155-1200	COMPRESSION PROPERTIES OF CFF/PPS COMPOSITE LAMINATES FABRICATED BY FILM STACKING TECHNIQUE Shixun Wang, Beijing Institute of Astronautic	P3202-10 E ELECTROMECHANICAL RESPONSE OF MULTIFUNCTIONAL PIEZOELECTRIC COMPOSITES Krishna Challagulla, Laurentian University The present work extends the previous study by the authors on piezoelectric foam structures to multifunctional composite structures by enclosing the foam structures with symmetric interconnec	MSC Software industry workshop *invitation only event* MULTI-SCALE MATERIAL MODELING WITH DIGIMAT TO SPEED-UP INNOVATION IN COMPOSITE MATERIAL AND PART DESIGN Soumik Chakrabarty Emille Storms t This workshop will run for 90 minutes	PROCESS OF LARGE AIRPLANE CFRP STRCTURES Marcin Malecha, German Aerospace Center We present automated approach for manufacturing of large aircraft structures made of dry non-crimped carbon fabrics from material logistics to vacuum bagged	P3205-10 INTRA-LAMINAR AND INTER- LAMINAR PROGRESSIVE FAILURE ANALYSIS OF AFP COMPOSITE ON A TOW LEVEL Xie Li, University of New South Wales A tow level numerical modelling technique	P3206-10 COBALT PHOSPHIDES COATED COPPER OXIDE NANOROD ARRAYS FOR ENHANCED OVERALL WATER SPLITTING Joong Hee Lee, Chonbuk National University Herein, we report the cost-effective	P3207-10 SHORT-TIME APPROACH FOR FATIGUE LIFE ESTIMATION OF MULTIFUNCTIONAL COMPOSITES Sebastian Backe, TU Kaiserslautern A newly developed short-time approach for fatigue life estimation of multifunctional composite laminates based on single load increase tests is introduced.	Meeting room 212	Meeting room 213 P3209-10 CFRP-STEEL HYBRIDS WITH IMPROVED AGEING RESISTANCE THROUGH ZINC OXIDE NANORODS-INVESTIGATION OF BASIC MECHANISMS Jan Striewe, Paderborn University Investigations on the mode of action and influence of an innovative wet- chemical surface pre-treatment of steel substrates on the ageing resistance of hybrids made of steel and carbon fibre- reinforced plastic.	P3210-10 SIMULATION AND EXPERIMENTS FOR MECHANICAL PROPERTIES DOMINATING THE PRESS MOLDING USING CFRTP PREFORMS Yuji Abo, Kyoto University The press molding using CFRTP attracts attention to reduce production times. The pull-out and	Meeting room 215 P3211-10 CHARACTERIZATION AND THERMAL EFFECT ON MECHANICAL PROPERTIES OF BIOMATERIAL- REINFORCED- POLYPROPYLENE Anh Dung Ngo, Ecole De Technologie Supérieure	P3212-10 GREEN AND NATURAL FIBRE PANEL COMPOSITES FROM BAMBOO-A MATERIAL OF THE FUTURE Uday Nagammanavar, IPIRTI IPIRTI has developed number of bamboo based structural products like Bamboo Mat Board (BMB), as alternative to plywood, Bamboo Mat Corrugated Sheet	Altair industry workshop RESEARCH MEETS PRACTICE - APPLYING MULTISCALE MODELING AND OPTIMIZATION IN COMPOSITES ENGINEERING Markku Palanterä, Director of Global Composites Business Development This workshop will run for 90 minutes Sponsored by	Meeting room 218 P3214-10 STRENGTHENING OF PURE AL MATRIX COMPOSITES BY IN- SITU SYNTHESIZED NANO AL-O NEEDLE PHASE Xinxin Zhu, Southwest Jiaotong University The in-situ Al matrix composites were synthesized by mechanical milling followed by oscillatory press sintering, producing an excellent mechanical properties both at ambient and elevated temperatures.	Mobility between Academia and Industry Isabelle Paris, Bombardier Bridging the gap between education and employment Tony Belcher, Boeing Modernising Composites Regulations Ole Thomsen, Bristol
1200-1205	P3201-11 COMPRESSION PROPERTIES OF MULTIFUNCTIONAL CFRP LAMINATES WITH EMBEDDED LITHIUM-ION POLYMER BATTERIES Pooneh H.M. Attar, RMIT University	P3202-11 DAMAGE VISUAL INDICATION SYSTEM FOR POLYMER COMPOSITE STRUCTURES Olga Bulderberga, University of Latvia The new concept of structural health monitoring for polymer composites is presented by damage visual indication system. The concept is based on the colour change in the place of the applied over thresholding load.		P3204-11 CONTINUOUS TAPE LAYUP MOLDING BEHAVIOR OF CFRTP USING NEAR- INFRARED HEATING AND INDUCTION HEATING Naoki Nakata, Kindai University In this study, layup process of CF/ PA6 prepreg tape to predict the optimum processing condition for carbon fiber continuous tape layup molding equipment developed in.	TEST VERIFICATION OF PREPREG PEEL FOR PLACEMENT	P3206-11 ELECTROMAGNETIC PROPERTIES OF KH560/RGO@ FE304/TIO2/ PARAFFIN WAX COMPOSITE IN 0.5- 18 GHZ FREQUENCY Yuexuan Li, Xi'an Jiaotong University Si-modified KH560/ RGO@Fe3O4/TiO2 composite is successful synthesized by a facile hydrothermal reaction. Its maximum RL value is optimized to -20.9 dB at 8.6 GHz with a thickness of 6 mm.	ANALYSIS FOR WIND TURBINE GEAR SHAFT WITH OXIDE INCLUSION Ran Liu, Xi'an Jiaotong			P3210-11 DEVELOPMENT OF BENDING PROCESS FOR THERMOPLASTIC COMPOSITE PIPE DURING PULTRUSION MOLDING PROCESS Asami Nakai, Gifu University		P3212-11 ONE-STEP EXTRACTION OF CELLULOSE NANOCRYSTALS ONLY USING HIGH-PRESSURE HOMOGENIZER Nae-man Park, ETRI A simple and green process to produce cellulose nanocrystals by using only a high pressure homogenizer is proposed. Its yield is about 80%.			Come an join our animators as we discuss key topics and identify ways forward. Each animator will represent a topic and visitors can move between individual topics or stay with one that particularly interests them.
1205-1210		P3202-12 EXPERIMENTAL CHARACTERIZATION AND MODELLING OF MECHANICAL BEHAVIOR OF MICROCAPSULES IN COMPOSITES Andrey Aniskevich, University of Latvia Mechanical behavior of single microcapsule and embedded in polymer matrixes was investigated experimentally and modelled analytically and numerically.		P3204-12 IMPREGNATION PROCESS IN OPEN MOLDING METHOD USING MULTI- FILAMENT WINDING Kazuma Otake, Gifu University In this study, the heater position and the heating temperature were changed, and the impregnated states of the molds were compared and evaluated by observing the cross section, and the heating condition was examined.		FOR CELLULOSE NANOFIBERS/CLAY NANOCOMPOSITES USING X-RAY DIFFRACTION Shunichi Mori, Kobe University We employed	FATIGUE ANALYSIS OF CFRP Marc Möller, Technische Hochschule Köln The present paper mainly deals with the design of homothetic fatigue failure envelopes under multiaxial cyclic			P3210-12 PRESS AND INJECTION HYBRID MOLDING OF GF/ PP HAT-SHAPED MEMBER AND EVALUATION OF ITS BENDING PROPERTY Kazuto Tanaka, Doshisha University The bending properties of hybrid molded GF/PP hat-shaped member were evaluated and FEM analysis was carried out to clarify the relationship between material cost and mechanical properties.		P3212-12 RESEARCH ON COMBUSTION BEHAVIOR OF HYBRID COMPOSITE BY FIRE DYNAMICS SIMULATOR Yoon Hee Park, Changwon National University As a result, some errors are generated, but the combustion behavior is similar. Research is needed to accurately implement factors and surroundings that affect ignition time and behavior in order to reduce errors.			
1210-1215		P3202-13 SMART MECHAN- OLUMINESCENT SHAPE MEMORY FILM FOR FLEXIBLE STRESS SENSING Yang He, Harbin Institute of Technology		P3204-13 PROGRESS IN STRUCTURAL TAILORED POLYMER INSERTS; TRENDS AND STRATEGIES TOWARDS FUNC- TIONAL POLYMERIC INTER-PLY REIN- FORCEMENTS Sithila Theminimulla, Deakin University The world of smart materials offers a progress towards a more intelligent materials design philosophy. This work examines progress in the utilisation of modified thermoplastic additives as multifunctional strain sensing elements.		CAPPED OLIGOMER/ MAGNETITE NANOCOMPOSITES - APPLICATION TO WATER/OIL SEPARATION Hideo Sawada, Hiroskai University Fluoroalkyl end-capped vinyltrimethoxysi- lane oligomer/magnet- ite composites, which	SPECIMEN DESIGNS FOR PLANAR BIAXIAL FATIGUE TESTING IN COMPOSITES Aakash Moncy, Technical University of Denmark Usage of composite cruciform specimens for planar-biaxial fatigue testing are evaluated using finite element analysis for their uniformity in the stress and the strain state in their biaxial			P3210-13 DESIGN AND ANALYSIS OF COMPOSITE CARBON FIBER REINFORCED ANTI- COLLISION BEAM BASED ON ANSYS ACP Chuanxiang Zheng, Zhejiang University		P3212-13 TUBE MADE FROM POLYLACTIC ACID YARN AND SILK YARN BY FILAMENT WINDING TECHNIQUE Natee Srisawat, Rajamangala University of Technology Thanyaburi			

	DAY 14 AUGUST													
Time 1215-1220	Plenary 2 Meeting room 205 P3202-14 DAMAGE DETECTION USING DIRECT-WRITE PIEZOELECTRIC	MSC Software industry workshop	Meeting room 208	Meeting room 209	P3206-14 CARBON DOT/ POLYPYRROLE NANOPARTICLE COMPLEXES AS	Meeting room 211	Meeting room 212	Meeting room 213	Meeting room 214	Meeting room 215	Meeting room 216	Meeting room 217 Altair industry workshop RESEARCH	Meeting room 218	Meeting room 219 Mobility between Academia and Industry Isabelle Paris, Bombardier
	TRANSDUCERS AND LAMB WAVES IN COMPOSITE MATERIALS Marilyne Philibert, IMRE, A*STAR, Singapore The objective is to apply direct-write transducers on CFRP plate for active sensin of impact damage by using non-ceramic P(VDF-TrFE) with an electrode patterned for mode selection.	MULTI-SCALE MATERIAL MODELING WITH DIGIMAT TO SPEED- UP INNOVATION IN COMPOSITE MATERIAL AND PART DESIGN Soumik Chakrabarty Emilie Storms This workshop will run for 90 minutes Sponsored by			MULTIFUNCTION- AL THERANOSTIC AGENTS Tae Eun Kim, Inje University In this study, carbon dots are combined with the polypyrrole nanoparticles to make a novel PTT-imaging agent. The complexes can be utilized as theranostic agents by monitoring in real time.							METS PRACTICE - APPLYING MULTISCALE MODELING AND OPTIMIZATION IN COMPOSITES ENGINEERING Markku Palanterä, Director of Global Composites Business Development This workshop will run for 90 minutes Sponsored by		Bridging the gap between education and employment Tony Belcher, Boeing Modernising Composites Regulations Ole Thomsen, Bristol University Increasing access for SMEs to internation-research
1220-1225	P3202-15 INFLUENCE OF OPTICAL FIBER SENSOR PLACEMENT ON CFRP LAMINATES FOR PROCESS AND STRUCTURAL HEALTH MONITORING Helena Rocha, University of Minho We studied the influence of embedde optical fibers on the mechanical propertie of CFRPs, OF with FE sensors were used for cure monitoring and detection of barely visible impact damag	s G			P3206-15 CARBON QUANTUM DOTS USING POLYPHENOL COMPOUNDS:SKIN ANTI-AGING SeokWon Park, Inje University In this study, carbon quantum dots are synthesized using polyphenol compounds. We confirmed the applicability of carbon quantum dots as an anti-aging substance.							CONTINUED		Matt Jevons, MT Aerospace This session aims to debate topics that cross between academia and industr in a close and less formal environment. Come an join our animators as we discuss key topics and identify ways forward. Each animator will represent a topic and visitors can move between individual topics or stay with one that particularly interests them.
1225-1230	P3202-16 STRAIN SENSING OF EPOXY RESIN USIN POROUS CARBON NANOTUBE/ GRAPHENE COMPOSITE BUCKYPAPER Guangming Yang, Tongji University Porous Carbon nanotube/Graphene Buckypapers are fabricated for strain sensing of epoxy resir The obtained strain gauges exhibited a high GF of 10.83, high linearity (RZ =0.987) and good cycle stabil	G			P3206-16 MELT ELECTROSPINNING: AN ECO- FRIENDLY WAY OF NANOFIBER AND GRAPHITIZED FIBRE PREPARATIONS USING NANOCELLULOSE Haoyi Li, Beijing Chemical Technology University									CONTINUED
1230-1235	P3202-17 MULTIFUNCTIONAL STRUCTURAL ENERGY STORAGE COMPOSITES Feng Huang, Universit of New South Wales New structural concepts for composite batteries will be developed to store electrical energy, without sacrificing mechanical strength and stiffness. Exampli include designing new energy storage cores for sandwich structures using eithe supercapacitor or laminated battery techniques.	ty te			P3206-17 MULTILEVEL RESISTIVE SWITCHING IN NANO SILVER INCORPORATED CHITOSAN THIN FILMS Sreedevi Vallabhapurapu, University of South Africa Nano silver incorporated Chitosan thin films were prepared by simple spin coating. Our careful I-V measurements shows multilevel switching characteristics of the chitosan and silver film for one layer.									
1235-1240					P3206-18 IN VITRO STUDY OF A NOVEL BIOFUNC-TIONALIZATION FOR 3D PDMS SCAFFOLD VIA SURFACE MODIFICATION Baek Ji Hun, Hanam University We fabricated PDMS nanosheets using electrospinning. Then, PDMS nanosheets surface were modified with a biocompatible material that stimulates cell proliferation and differentiation.									

ENTIFIC

PROGRAM

73

0-1600 3301-4 EXFOLIATION AND FUNCTIONALIZATION OF MXENE: EFFECTIVE FLAME RETARDANT AND REINFORCEMENT FOR THERMOPLAS TIC POLYURETHAN ELASTOMER Wei Yang, University New South Wales 0-1630 Coffee break	3302-4 TOUGH BIO- INSPIRED CERAMIC COMPOSITES FOR AMBIENT AND HIGH TEMPERATURE APPLICATIONS - Behnam Ashrafi, E National Research Council Canada	3304-4 PROPERTIES OF POLYAMIDE-6 COMPOSITES USING THERMOPLASTIC RESIN TRANSFER MOULDING James Murray, University of Edinburgh Thermoplastic composite laminates with ~53% fibre volume fraction, ~1% voids volume	3305-4 DEVELOPING HIGH TEMPERATURE - HIGH PERFORMANCE GF/PEKK THERMOPLASTIC PREPREGS Zhongwei Guan, University of Liverpool A test rig has been developed to produce glass fibre/PEKK prepregs. Through the resin bath nanomaterials can be added to impregnate the fibre. Also fibre content can be	3306-4 EFFECT OF MATRIX CRACKS ON THE STIFFNESS DEGRADATION OF LAMINATED COMPOSITE BEAMS Oscar Gerardo Castro Ardila, Denmark		3309-4 IN SITU MICRO- CT IMAGING OF COMPRESSION LOADED CARBON FIBRE REINFORCED POLYMER SPECIMENS WITH VOIDS AND WRINKLES Abhiram Ramesh, University of Auckland CFRP specimens extracted from curved regions containing voids and wrinkles were tested using a novel compression fixture, allowing for in situ X-ray µ-CT scans under several load steps to determine the type and evolution of damage.	3310-4 MECHANICAL PROPERTIES OF MULTIFUNCTIONAL SANDWICH COMPOSITES WITH EMBEDDED LITHIUM-ION POLYMER BATTERIES Adam Best, CSIRO		3313-4 EXPERIMENTAL EXAMINATION ON THE HIGH-SPEED BALLISTIC IMPACT FAILURE BEHAVIOR OF LAMINATED AND TEXTILE COMPOSITE PANELS Chao Zhang, Northwestern Polytechnical University The high-speed impact behavior of composite laminates, woven composites and triaxially braided composites were studied experimentally compared, with the introduction of digital image correlation, C-scan and X-ray CT characterizations.	3314-4 FATIGUE BEHAVIOR OF UN-NOTCHED AND OPEN-HOLE QUASI-ISOTROPIC PSEUDO-DUCTILE THIN-PLY CARBON/ GLASS HYBRID LAMINATES Meisam Jalalvand, University of	3315-4 COST-EFF SYNTHESIS COPPER/D COMPOSIT ACCEPTAB THERMOP PROPERTII Fei Yang, Un Waikato It is feasible cost-effectiv induction he forging to pr copper/dian composites acceptable t conductivity critical appli requirement high-power device.

THURSD	AY 15 AUGUS	T														
Time	Plenary 2	<u> </u>	Meeting room 206	Meeting room 208	Meeting room 209	Meeting room 210	Meeting room 211		Meeting room 212	Meeting room 213	Meeting room 214	Meeting room 215	Meeting room 216	Meeting room 217	Meeting room 218	Meeting room 219
0800-0805 0805-0850		ouncements FRENDS IN AEROSPAC	E COMPOSITES Jerry Yo	oung, Boeing, USA												
0850-1030	Wilhelm Rupertsberger, Patrick Blanchard, Ford Mike Hinton, High Volui David Doral, Quickstep, Richard Simpson, Furna	l, USA me Manufacturing Catapu Australia ace Engineering, Australia ced Fibre Cluster, Australia	lt Centre, UK													
0900-1030	ADDITIVE MANUFACTUNABLE MECHANIFLEXIBLE ELECTROISELF-SENSING VARI	TURING OF THERMOS	ETTING POLYMERS AN DSITE FILMS VIA PHAS DRAGE Michael F. Dursto DMPOSITES Robert She	ND COMPOSITES USING INVERSION AND 3D ck, US Air Force Research pherd, Cornell University	oy Multimaterial Additivo IG FRONTAL POLYMERI PRINTING - THEIR API In Lab	IZATION Nancy Sottos, L	JIUC 🔣	#								
1030-1100	Coffee break Exhibition hall															
1100-1320	4101 ONR Solid Mechanics Symposium	NSF-AFOSR Joint Workshop on Mechanics-Based Design of Intelligent Material Systems by Multimaterial Additive Manufacturing PART 2	4103 Nano-composites	4104 Liquid composites moulding and machining of composites	4105 Additive manufacturing	4106 Composite structures	4107 Multiscale modelling		4108 Three dimensional composites	4109 Fracture and damage	4110 Offshore and subsea	4111 Automotive	4112 Testing methods	4113 Hybrid composites	41145 Fatigue	4115 Mechanics of composites
1100-1130	KEYNOTE 2: THERE I KEYNOTE 3: INTEGR Janice Ba KEYNOTE 4: REVEAL	IS NO SUCH THING AS ATING IMAGING TECH arton, University of South	A COMPOSITE MATER NIQUES FOR ASSESSION DESCRIPTION (Meeting room 2	IAL - ONLY COMPOSIT NG THE PERFORMANO 213)	RONMENTS Arun Shukla TES OF MATERIALS Joh CE OF LARGE COMPOS IALISATION IN POLYME	in Hart-Smith, Boeing (ret		,								
1130-1140	Move to concurrent roo	•														
1140-1200	4101-1 DEGRADATION OF THE EXPLOSIVE BLAST RESISTANCE OF COMPOSITES	This session starts at 1100 hours MULTI JET FUSION TECHNOLOGY AND ITS ADVANCED VOX-EL POTENTIALS Lihua Zhao, HP Labs ADDITIVE MANU-FACTURING AND ARCHITECTED MATERIALS: NEW METHODS AND MATERIALS Christopher Spadaccini, Lawrence Livermore National Laboratory	COATINGS FOR TRIBOLOGICAL APPLICATIONS Xi Shen, Hong Kong University of Science and Technology Novel graphene/ LCP composites with layered heterogeneous structures show extremely high wear resistance and are therefore suitable for many tribological applications.	OF PORE SIZE IN WICKING - VALIDA- TION ON CARBON REINFORCEMENTS AND APPLICATION TO THE SWELLING OF BIO-BASED REIN- FORCEMENTS Hong-Nhan Vo, Ecole Des Mines During the capillary wicking in Liquid Composite Moulding, a new model is	IMPACT OF ADDITIVE MANUFACTURING TI-6AL-4V SANDWICH PANELS WITH LATTICE Peiyao Li, School of Aeronautics, Northwestern Polytechnical University, Xi'an, China The main objective of this research is to study the low velocity impact response of sandwich panels with	COMPOSITES SUBJECTED TO LOW-VELOCITY AND HIGH-VELOCITY IMPACT LOADING Jun Liu, Imperial College London The performance of thermoplastic (AS4/ PEEK) and thermoset (T700/epoxy) laminates under drop-weight and gas gun impacts is evaluated. Three-	COMPOSITES: COMPUTATIONAL HOMOGENIZATION VS ORENTATION AVERAGING Seyed Mohsen. Mirkhalaf Valashani, University of Gothenburg/ chalmers University of Technology		4108-1 SYNERGISTIC DELAMINATION TOUGHENING OF COMPOSITES USING NANO- AND MICRO- SCALE REINFORCE- MENTS Anil Ravindran, Deakin University	COMPOSITES Mahoor Mehdikhani, KU Leuven	4110-1 LONG TERM FATIGUE DEGRADATION - SUPERPOSITION OF DRY AND WET PROPERTIES Andreas Echtermeyer, Ntnu	A NEW CONCEPT FOR THE INTEGRATION OF AN INDUCTIVE CHARGING UNIT IN ELECTRIC VEHICLES USING FIBER REINFORCED PLASTIC Tobias Mayr, Bmw Group In this study a new concept for the integration of an inductive charging unit into the underbody of an electric vehicle by using fiber reinforced plastic is described.	MECHANICAL TEST STANDARDS FOR SUSE WITH 3D WO- VEN COMPOSITES Matthew Poole, National Physical Laboratory	A113-1 CNT FIBER VEIL INTERLEAVED CARBON FIBER/ EXPOXY LAMINATE COMPOSITE Yunfu Ou, Imdea Materials Mode I interlaminar fracture toughness of woven fabric/ epoxy laminate was improved as much as 60% when interleaving as-received fluffy CNT veils, while degradatior was observed in the unidirectional system.	CRACK GROWTH PROPERTIES OF CFRP Antoine Le Guen- Geffroy, Ifremer	4115-1 ON THE EXPERIMENTAL VALIDATION OF THE WAVE PROPAGATION MODELLING FOR TWO-DIMENSIONAL PERIODIC TEXTILE COMPOSITES Victor Thierry, University of Nottingham An experimental validation of a numerical method allowing vibroacoustic and ultrasonic wave propagation analysis in complex woven composites is proposed in this paper.
1200-1220	4101-2 EFFECT OF SEA WATER ON COMPRESSIVE PROPERTIES OF CARBON FIBER VINYL ESTER COMPOSITES Dayakar Penumadu, University of Tennessee	COMBINING FUSED FILAMENT FABRI- CATION (FFF) AND AUTOMATED FIBER	4103-2 THE ENHANCED INTERLAMINAR FRICTIONAL BEHAV- IOR OF WRINKLED GRAPHENE FOR DAMPING APPLI- CATION Wenjiang Lu, Institute for Composites Science Innovation (incsi), School of Materials Science and Engineering, Zhejiang University		TUBE/POLYCAPROL- ACTONE COMPOSITE FILAMENTS USED	4106-2 TENSILE STRENGTH PREDICTION OF NOTCHED LAMINATES FROM A COMPACT TENSION TEST Qiang Ma, School of Aerospace Engineering & Applied Mechanics, Tongji University	ANALYSIS OF DAM- AGE PROPAGATION REGARDING WOVEN CFRP LAMINATES BASED ON HOMOG- ENIZATION THEORY Kosuke Nonoyama,		4108-2 SUPPRESSING DELAMINATION IN COMPOSITE INTERSECTIONS WITH TUFTING AND Z-PINNING Matt Scott, National Composites Centre	LONG-CARBON FIBER REINFORCED	Namdeo, Airborne Oil & Gas A generic methodology for thermo-mechanical creep is developed, which provides a systematic and time-	In this work, a r framework for efficient analysis of composite structures is presented The framework is	IMAGE CORRE- LATION, PASSIVE THERMOGRAPHY AND ACOUSTIC EMISSION TO INVES TIGATE DAMAGE INITIATION AND PROPAGATION OF OUT-OF-PLANE FIBER WAVINESS Michael Thor, University of Applied Sciences Upper Austria	INFORCED POLYMER (CFRP) COMPOS- ITES WITH A THIN EMBEDDED POLYU- RETHANE FILM Evanthia Pappa, The University of Edinburgh	SUBMICRON GLASS FIBER ADDITION ON MECHANICAL PROP ERTY OF SHORT CARBON FIBER REINFORCEO VINYL ESTER RESIN Thi Thanh Nhan Nauyen, Doshisha University The improvement of Mode I fracture	IN LAYER-TO-LAYER 3D WOVEN COM- POSITES Geoffrey Neale, Ulster University This research investigates the suitability of a novel 3D woven composite architecture as an axial crush energy absorbing system for automotive applications.

THURSD	AY 15 AUGUST															
Time			Meeting room 206	Meeting room 208	Meeting room 209	Meeting room 210	Meeting room 211	N.	leeting room 212	Meeting room 213	Meeting room 214	Meeting room 215	Meeting room 216	Meeting room 217	Meeting room 218	Meeting room 219
1220-1240	EFFECT OF ARCTIC TEMPERATURE ON POST-IMPACT FLEXURAL STRENGTH OF COMPOSITES K.T. Tan, The University of Akron This work studies the flexural collapse modes of sandwich composites due to low arctic temperature and impact damage using analytical prediction and experimental validation.	TECHNOLOGY AND ITS ADVANCED VOX- EL POTENTIALS Lihua Zhao, HP Labs ADDITIVE MANU- FACTURING AND ARCHITECTED MATERIALS: NEW METHODS AND MATERIALS Christopher Spadaccini, Lawrence Livermore	4103-3 NANOENGINEERING OF FIBRE SURFACE FOR CARBON FIBRE-CARBON NANOTUBE HIERAR-CHICAL COMPOS-ITES Wojciech Szmyt, Fachhochschule Nordwestschweiz, Institut Für Kunststofftechnik An alumina coating of carbon fiber provides protection in the harsh conditions of direct carbon nanotube growth. We enhanced the alumina-fibre adhesion by surface treatment that promotes covalent bonding.	OF SOME CUTTING TOOLS IN TURNING OF SILVER-IMPREG-	4105-3 A FACILE INK JETTING SYSTEM FOR ADDITIVE MANUFACTURING WITH ABRASIVE INK COMPOSITIONS TOWARDS 4D PRINTING Hani Naguib, University of Toronto 4D printing of functional materials using a novel binder jetting approach. The approach prints functionally graded composites, allowing pattern-driven 4D printing of activatable materials.	GROWTH UNDER VARIABLE AMPLITUDE LOADS Loris Molent, Defence Science and Technology Delamination growth in simple laminate specimens appears systematic and thus should be predictable.	A107-3 A DIRECT FE2 METHOD FOR CONCURRENT MULTILEVEL MODELING OF COMPOSITES IN A SINGLE FINITE ELEMENT ANALYSIS Vincent Tan, National University of Singapore Direct FE2 allows for the analysis of structures made from heterogeneous materials (e.g., composites) without the need for homogenized constitutive relations. It can be carried out directly on commercial FE software for non- linear finite deformation problems, including plasticity and damage.	II T C P V C	108-3 NEURICE OF TEX- ILE ARCHITECTURE IN MECHANICAL ROPERTIES OF 3D VOVEN CARBON COMPOSITES flonali Dahale, Ulster Iniversity	4109-3 PREDICTING NON-LINEAR SHEAR DEFORMATION AND FAILURE IN 3D FIBRE-REINFORCED COMPOSITES Carolyn Oddy, The following work proposes a general framework for modelling the mechanical response of 3D fibre-reinforced composites.	WETTED VIBRATION BEHAVIOR OF FLEX-IBLE COMPOSITE HYDROFOILS Andrew Phillips, Defence Science and Technology Group The objective of this work is to develop a numerical modelling approach that can predict the wetted vibration behavior of		Institut für Füge- und Schweißtechnik The lack of standardised testing methods for hybrids motivates the investigation of the	CARBON FIBER COMPOSITES - IMPROVED PERFOR- MANCE, REDUCED WEIGHT. Filip Stojcevski, Deakin University Nature inspired designs have been recreated in composite laminates using modifications to fiber interface bonding. Results show vast improvements	NOVEL APPROACH BASED ON THE S-N DIAGRAMS Antonio Raimondo, Delft University of	4115-3 DISBOND GROWTH ASSESSMENT FOR BONDED PATCH REPAIR OF PRIMARY AIRFRAME STRUC- TURES Veldyanto Tanulia, University of New South Wales
1240-1300	A COMBINED DIC- PIV EXPERIMENTAL APPROACH FOR THE STUDY OF IMPACT RESPONSE OF WATER-BACKED PANELS Maurizio Porfiri, New York University Tandon School of Engineering We demonstrate a combined approach to study fluid-structure interaction associated with water-backed impact, based on the	TRY COMPOSITES COMBINING FUSED FILAMENT FABRI- CATION (FFF) AND AUTOMATED FIBER PLACEMENT (AFP) Felix Raspall, Singapore University of Technology and Design 3D PRINTING OF BIO-COMPATIBLE TOUGH SHAPE MEM-		CFRP PROCESSED WITH NANOSECOND UV LASER PULSES Hiroharu Tamaru, The	MANUFACTURING OF BONE-INSPIRED STRUCTURAL- POWER COMPOSITES Ajit Panesar, Imperial College London	OF MECHANICAL PRE-DAMAGE AND STRAIN RATE ON THE MECHANICAL PROPERTIES OF CFRP/METAL HYBRID PROFILES Markus Muth, Karlsruhe Institute of Technology In the work at hand, a structure made out of steel and carbon fibre reinforced plastics (CFRP) is under	THE SIZE REDUCED UNIT CELL FOR TRIAXIALLY BRAIDED COMPOSITES Mingming Xu, University of Nottingham Relative displacement boundary conditions have been formulated for the	M M M T T F S 3 C C P P V T T M M T T T T T T T T T T T T T T T	nd mechanical roperties of optimised D multiaxial flat, ylindrical, near net	This paper quantitatively evaluates microscopic failure process in adhesively bonded CFRP joints	Manchester We observe an order of magnitude reduction in carbon dioxide permeation and shutdown of hydrogen sulfide permeation through polyamide/graphene laminates. Epoxy/CF/ graphene composites show a 60% reduction	411-4 MULTI-PHYSICS SIMULATION OF SOFT MAGNETIC COMPOSITES FOR INDUCTIVE POWER TRANSFER SYSTEMS Maedeh Amirpour, The University of Auckland	OF-PLANE IMPREGNATION Björn Willenbacher, Institut für Verbundwerkstoffe GmbH An out-of-plane permeability measurement system is	CARBON-FIBRE/ EPOXY LAMINATES UNDER TENSION Jing Sun, Guangzhou University Tensile behaviour of titanium-based carbon- fibre/epoxy laminates (TI-CF FMLs) were investigated. The failure mechanism as swell as the specific energy absorption of the TI-CF FMLs were analyzed and evaluated respectively.	MECHANISMS OF CF-PPS FROM HIGH TO VERY HIGH CYCLES Dominic Weibel, TU Kaiserslautern - Institute of Materials Science and Engineering VHCF properties of aerospace applied CF-PPS are investigated using ultrasonic frequencies while 10 Hz HCF tests serve as benchmark. Similar damage mechanisms	ON DAMAGE RESISTANCE OF 3D BRAIDED
1300-1320	4101-5 IMPACT RESPONSE OF COMPOS- ITE SANDWICH STRUCTURES WITH TOUGHENED EPOXY MATRICES George Irven, Imperial College London	CONTINUED				BASED TRANSVERSELY ISOTROPIC CONSTITUTIVE MODEL FOR UNIDIRECTIONAL POLYMER COMPOSITES CONSIDERING THE	4107-5 INCREASING THE THERMAL CONDUCTIVITY OF POLYMER NANOCOMPOSITES FILLED WITH CARBON NANOTUBES VIA MOLECULAR DYNAMICS SIMULATION Yangyang Gao, Beijing University of Chemical Technology	N C N C F F M M M M M M M M M M M M M M M M M	108-5 MESO-SCALE DPTIMISATION AND MANUFACTURING OF CONTINUOUS HIBRE 3D HEINFORCEMENTS Hikhail Matveev, the University of Hottingham			4111-5 TUNABLE SELF-SENSING PERFORMANCE OF ADDITIVE MANUFACTURING ENABLED PLA NANOCOMPOSITES FOR BIOMEDICAL APPLICATIONS Jabir Ubaid, Khalifa University	4112-5 PRACTICAL APPLICATION OF TEXTILE PERMEABILITY MEASUREMENT Ana Yong, National Physical Laboratory Permeability measurement is beginning to advance from the research stage toward industry application. As this transition is made, practical challenges in the transition from the research environment to meeting the needs of industry must be addressed.		COMPOSITE PIPES UNDER STATIC FATIGUE AND CYCLIC FATIGUE Yuging Zhen, Wuhan University of Technology Basis on static fatigue test and cyclic fatigue	THICKNESS PENETRATIVE REINFORCEMENTS ON THE MECHANICAL BEHAVIORS OF COMPOSITE-TO- METAL BONDED JOINTS Longquan Liu, Shandhai Jiao Tong
1320-1420	Lunch Exhibition hall															was discussed.
1330-1415	Quality and future of journal Michael Wisnom, Bristol Tsu-Wei Chou, University Ole Thomsen, University	Composites Institute (AC of Delaware	CCIS)													
1400-1515	DESIGNING WITH 4D TOPOLOGY OPTIMIZA	PRINTING: EXPLORAT ATION FOR ACTIVE AN D DESIGN: A FORWAF	TIONS IN AUTONOMOU ID MULTI-FUNCTIONA	ent Material Systems by JS MACHINES Kristina S L COMPOSITES Kurt Ma CTIVE Miguel Aguilo, Sani	, <u>hea,</u> ETH Zurich <u>ute</u> , University of Colorad		S									
1420-1505	PLENARY LECTURE: D Plenary 2	ESIGN, MANUFACTUR	RE AND PERFORMANC	E OF TEXTILE COMPOS	SITES <u>Andrew Long</u> , Not	tingham University, UK										
1505-1515	Move to concurrent sess	sions														

THURSE	DAY 15 AUGUS	T													
Time	Plenary 2	Meeting room 205	Meeting room 206	Meeting room 208	Meeting room 209	Meeting room 210	Meeting room 211	Meeting room 212	Meeting room 213	Meeting room 214	Meeting room 215	Meeting room 216	Meeting room 217	Meeting room 218	Meeting room 219
1515-1550	P4201 Computational and finite element methods		P4203 Self-healing and three dimensional composites	P4204 Process modelling	P4205 Recycling and sustainability and renewable energy	P4206 Fracture and damage	P4207 Joints	P4208 Nano-composites	P4209 Computational and finite element methods	P4210 Testing methods	P4211 Resin and polymers	P4212 Sandwich structures and materials	P4213 Interfaces and interphases	P4214 Fibers	P4215 Multiscale modelling
1515-1520	P4201-1 POTENTIAL APPLICATION OF WIRE WOVEN MESH AS PACKING TOWER BED LIMITER- COMPUTATIONAL APPROACH Vahid Ebrahiminejad, University of Southern Queensland The potential application of Wire bulk cross (WBC) truss-like periodic cellular metal as future tower packing support evaluated. FEA and CFD results were combined for real case scenarios to optimise the best porosity ratios.	BISTABLE COMPOSITE LAMINATE STRUCTURES Oliver Myers, Clemson University EFFICIENT MULTISCALE OPTIMAL DESIGN AND FABRICATION OF CONTINUOUS FIBER REINFORCED COMPOSITES Gowir Narasimha Boddeti, Singapore	P4203-1 MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT Dong-min Kim, Yonsei University In this study, it was to be developed for a microcapsule-type self-healing protective coating using linseed oil turning into a soft film as a healing agent for application to cementitious materials using linseed oil.		ADDITIVES IN BLENDS OF PA AND RECYCLED PET Bianka Nagy, University of Pannonia Effects of olefin-maleicanhydride copolymer	Sangdeok Kim, Chungnam National University In this study, wedge splitting tests were performed to evaluate fracture behavior of particulate reinforced composite materials. Also, digital image correlation method was	ADHESIVELY BONDED ICFRP JOINTS CONSIDERING NON-LINEAR DEFORMATION OF ADHESIVE LAYERS Shunta Mimura, Kyoto University Numerical analyses were conducted to investigate the fracture behavior in the mode Il fracture toughness test. Cohesive zone	FOR BUILDING FACADES Leila Soufeiani, University of Melbourne Combustibility of cladding materials	Corporation This paper introduces a numerical simulation for optimizing the mixture of the fiber-reinforce cement-based composites. Short fibers are arranged individually	SEQUENCE ON APPARENT POISSON'S RATIO OF QUASI- ISOTROPIC LAMINATE CFRPS UNDER THE COMPRESSION	substitution patterns	SANDWICH PANELS SUBJECTED TO BENDING LOAD Mae Oiwa, Tokyo	INTERPHASE Faxiang Qin, Zhejiang University	Ponds, Australia This research systematically investigates the wet-spinning of the blends of textile and carbon fibre grade PAN polymers. The stability of the different	composite unit cell models for use in macro-scale component analysis.
1520-1525	P4201-2 FINITE ELEMENT ANALYSIS AND EXPERIMENTAL TESTING OF NON- CRIMP FABRIC COMPACT TENSION SPECIMENS - INFLUENCE OF COHESIVE PROPERTIES. Dimitris Gouskos, Imperial College London	Sponsored by	P4203-2 SELF-HEALING PROPERTIES OF CABBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING Fareed Tamaddoni Jahromi, Swinburne University of Technology	P4204-2 ID SQUEEZE FLOW ANALYSIS OF CHOPPED LONG FIBER THERMOPLASTIC COMPOSITE Wagas Ali, University of Twente The objective of our work is to investigate the fibre matrix separation during compression moulding and for that, ID squeeze flow experiments are performed in a flat geometry.	FIBRE SURFACE MODIFICATION Thomas Pozegic, University of Bristol The High Performance Discontinuous Fibre technology is an effective and sustainable high performance Aligned Discontinuous Fibre Reforced	preliminarily applied to two distinct material systems for a picture frame shear testing configuration. Both material systems had notched and un- notched configurations	Wet conditions. The changing failure modes were identified, and material characterisation tests were conducted to	PROPERTIES OF POLYMER COMPOSITES REINFORCED WITH MXENE NANOSHEETS Daiva Zeleniakiene, Kaunas University of Technology This study is addressed to identify a suitable	dynamic stress-strain relationship of granular metal materials was determined.	COMPRESSION TESTING OF CARBON FIBERS Shipeng Zhu, Aerospace Research Institute of Materials y and Processing Technology, In this study, the axial compression strength of carbon fiber multifilament has been determined on a series PAN-based	PROCESSING AND HEALING OF DIELS-ALDER EPOXIES AND THEIR FIBRE-REINFORCED POLYMER COMPOSITES Callum Branfoot, University of Bristol Epon 828 (DGEBA) was modified into covalent adaptable networks (CANs) using Diels-Alder chemistry. These CANs were there then thermomechanically characterised and tested as matrices for functional FRP		FIBER REINFORCED POLYMERIC COMPOSITES BY THE ELECTROSPRAY DEPOSITION OF WATERBORNE CARBON	MANOINDENTATION Shanghong Duran, Chalmers University of Technology, Sweden	HFGMC PREDICTION OF THE MICROMECHANI- CAL BEHAVIOR OF COMPOSITE Uri Breiman, Tel-aviv
1525-1530	P4201-3 MICROMECHANICS MODELING OF TENSILE/SHEAR BEHAVIOR AND CRACK DENSITY OF COMPOSITE MATERIALS Daichi Haruyama, Ihi Corporation We considered the method to evaluate the relationship between matrix crack and transverse crack and stiffness degradation of brittle matrix composites.		AND STRENGTH ANALYSIS Geon Tae Park, Changwon National University In this study, we apply the 2D carbon fiber for the beam structure, optimize the parameters of the beam through the experimental evaluatio and analysis, and then try to find the optimum	EXPERIMENTATION FOR SOLVING CHALLENGING CONSOLIDATION PROBLEMS Anatoly Kopteloy, Advanced Composites Collaboration for Innovation and Science (ACCIS), University of Bristol A new consolidation sensor framework for the characterisation of fresin flow in composite precursors	CARBON SCRAP: IMPACT OF MATERIAL PROPERTIES Sanjeev Rao, Khalifa University	FAILURE ANALYSIS METHOD FOR COMPOSITE LAMINATES CONTAINING OPENINGS WITH DIGITAL IMAGE CORRELATION Donghyun Yoon, Chungnam National University A progressive failure analysis model was developed using crack- band-model according to existing researches.	changes of the adhesive shear strength according to the surface roughness change and oxide film presence were measured and the cause of the fracture was analyzed through the fractured surface	P4208-3 POLYIMIDE AEROGELS CROSS-LINKED WITH AMINATED AG NANOWIRES: MECHANICALLY STRONG AND TOUGH Tianyi Zhang, Beihang University	P4209-3 DESIGN OF 70MPA COMPOSITE HYDROGEN STORAGE VESSEL Cheng Shuo, Hefei University of Technology Accurate modeling of IV type hydrogen storage vessel and optimize the structure design by 3D scanner,based on the progressive damage theory predict burst pressure cylinders	test. It gives general	P4211-3 THE ONE-POT SYNTHESIS, CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A2 + B3 MONOMERS Wanan Cai, Harbin Engineering University	P4212-3 DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE Bing Xiao, The University of Tokyo	P4213-3 MOLECULAR SIMULATIONS OF INTERPHASE FORMATION PROCESS OF CARBON FIBER REINFORCED POLYMER COMPOSITES Yingdan Zhu, Ningbo Institute of Material technology and Engineering (NIMTE), Chinese Academy of Science The reaction mechanism of cross- linking process and interphase model of carbon fiber reinforced epoxy composites was developed and analyzed by molecular dynamics simulation.	CARBON FIBRES USING FOCUSED ION BEAM Fang Liu, Chalmers University of Technology	P4215-3 DEVELOPMENT OF MULTISCALE DAMAGE PROPAGATION ANALYSIS METHOD FOR WOVEN LAMINATES USING A HOMOGENIZATION THEORY Gai Kubo, University of Tsukuba In this study, we develop an efficient multiscale analysis method for damage propagation of woven laminates using a homogenization theory.

THURSE	DAY 15 AUGUS	T														
Time 1530-1535	Plenary 2 P4201-4 APPLICATION OF A VARIABLE- KINEMATICS CONTINUUM SHELL ELEMENT TO THE ADAPTIVE NONLINEAR ANALYSIS OF COMPLEX SHELL STRUCTURES Aewis K.W. Hii, Bristol Composites Institute (accis) A variable-kinematics continuum shell element, whose through-thickness kinematics are adaptively refined/ reduced on-the-fly' is developed. The model is applied to the fracture analysis of composites, with adaptive element splitting using higher- order cohesive zone model.	Meeting room 205 NSF-AFOSR Joint Workshop on Mechanics-Based Design of Intelligent Material Systems by Multimaterial Additive Manufacturing PART 3 Session continued from 1400 Sponsored by	P4203-4 THE OPTIMIZATION OF PROCESS	P4204-4 MODELING THE TEMPERATURE GRADIENT EFFECT ON THE CURE-INDUCED DISTORTION OF CFRP L-SHAPED LAMINATES Valjun Li, Northwestern Polytechnical University	P4205-4 NOVELTY IN RECYCLING OF WASTE ELASTOMERS IN HDPE/PP BLENDS BY EXPERIMENTAL COMPATIBILIZERS Lilla Simon-Stöger, University of Pannonia, y Faculty of Engineering, Institutional Departmen of MOL Hydrocarbon and Coal Processing Rubbery waste has been jointly recycled	EXPERIMENT Yangbo Zhang, Xi'an Jiaotong University, Xi'an, China In this paper,an effective experimental in-situ tensile experiment method with a backboard is explored to study the	P4207-4 DAMAGE IN HYBRID JOINTED GLARE	FILE FILE FILE FILE FILE FILE FILE FILE	P4208-4 NTERFACIAL PROPERTIES OF WXENE/GRAPHENE/ POLYMER MATRIX	P4209-4 A MICROMECHANICAL MODEL IN CYCLIC PLASTICITY FOR FIBER REINFORCED WAVY COMPOSITES Danhui Yang, Xian Jiaotong University A micromechanical model based on the parametric finite-volume direct averaging micromechanics theory and the Abdel-Karim-Ohno cyclic constitutive model was build to simulate the cyclic behavior of periodic composites with wavy microstructure.	P4210-4 RESIN TREATMENT FOR RELIABLE TRANSVERSE SHEAR STRENGTH	P4211-4 NEW THERMOSET MATRIX BASED ON BISOXAZOLINES Salumeh Issazadeh, Deakin University Bisoxazoline resins are emerging due to high glass transition temperatures and improved inherent fire performance compared with traditional epoxy resins. In this study, the thermal properties and the effect of the bisoxzoline in the CALIDUR™ composite structure is	P4212-4 MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE Mengchuan Xu, Beijing Institute of Technology This paper introduces the design concept of the hierarchical structures in the AuxHex structures. Hybrid honeycomb superstructures with sub-structures of	P4213-4 CHARACTERISATION OF BOND STRENGTI IN OVERMOULDED HIGH- PERFORMANCE THERMOPLASTIC COMPOSITES Robert Gaitzsch, Faser- institut Bremen e.V. The bond strength of overmoulded PAEK-carbon fibre composites is experi- mentally characterised using a rib-pull-off	P4214-4 I FACTORS I GOVERNING THE TENSILE STRENGTH OF BASALT FIBRE Dan Xing, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences The strength of seven commercial basalt fibres was studied and compared, and the factors affecting the tensile strength of these fibres were	P4215-4 ANALYSIS OF MICRO/MESO/ MACRO TEMPERA- TURE-DEPENDENT ELASTOVISCOPLAS- TIC PROPERTIES OF WOVEN COMPOS-
1535-1540	P4201-5 MECHANICAL BEHAVIOR OF TEXTILE COMPOSITES USING A TWO-STEP HOMOGENIZATION TECHNIQUE Chaeyoung Hong, Unis The two-step homogenization method at the fiber/ matrix level and the textile level is presented. It is demonstrated this approach is capable of efficiently predicting the effective properties of textile composites.		P4203-5 EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES Song Jungil, Changwon National University	P4204-5 A CHARACTERIZATION STUDY RELATING CROSS-SECTIONAL DISTRIBUTION OF FIBRE VOLUME FRACTION AND PERMEABILITY Filip Salling Rasmusser Technical University of Denmark	VIBRATION OF A BRIMMED- DIFFUSER SHROUD FOR A WIND TURBINE Taeyoung Kim, Kyushu University This study discusses the effect of CFRP used for the brimmed- diffuser shroud on the vortex-induced vibration using a	PROPERTIES OF CONTINUOUS FIBER REINFORCED THERMOPLASTIC COMPOSITES WITH DIFFERENT RESIN FRACTION Tao Zhang, Beihang University The influence of resin fraction on the interlaminar properties of continuous glass fiber reinforced poly(phenylene sulfide)	mode of the joints was also characterized.	F G G G M G G S S L	P4208-5 ENHANCED FATIGUE PROPERTIES OF GRAPHENE OXIDE/ CARBON BLACK/ VATURE RUBBER COMPOSITES Shipeng Wen, Beijing Jniversity of Chemical Technology	P4209-5 MULTISCALE FAILURE ANALYSIS OF 3D BRAIDED COMPOSITE STRUCTURE BY COUPLING FEM AND FFT METHOD Guodong Fang, Harbin Institute of Technology	MULTI-LAYERED MATERIALS (COMPRESSIVE METHOD)	P4211-5 MELAMINE- MELTBLOWN NONWOVEN A HIGH PERFORMANCE MATERIAL COMBINING FOR THE FIRST TIME THERMOSET MELAMINE WITH EXCELLENT THERMAL AND ACOUSTIC PROPERTIES. Simona Lavric, Melamin D.d. Kocevje	PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE Peiyan Yang, Harbin Engineering University	CHEMISTRY James Randall, Institute for Frontier Materials The employment of SuFEx 'click' chemistries were explored on carbon fibres for the first time. Remarkably, a 130% improvement to the IFSS in epoxy resin	P4214-5 PROPERTIES AND STRUCTURAL PERFORMANCE OF KD-II SIC FIBER WITH DIFFERENT TEMPERATURE IN AIR AND ARGON ATMOSPHERE Chenxi Yang, Beihang University The high temperature exposure for KD-II continuous silicon carbide fibers was carried out at 800°C, 1000°C, 1200°C, 1400°C and 1500°C for 1 h in ai and argon atmosphere to investigate the properties and structures evolution of the fibers using tensile tests, XRD and SEM analysis	
1540-1545	P4201-6 WATER VAPOR CORROSION BEHAVIOR AND FAILURE MECHANISM OF PLASMA SPRAYED MULLITE/LUZSI2O7- LUZSIO5 COATINGS Xunxun Hu, School of Materials Science and Engineering, Beijang University, Beijing, China Plasma sprayed mullite/Lu2Si2O7- Lu2SiO5 coatings werf fabricated. Water vapo corrosion behavior and failure mechanism were investigated.	-		COMPOUNDS IN	HYDROLYSIS MODE AND INDIVIDUAL ENZYME					Institute of Technology We propose a novel periodic topological mechanical metamaterial, topological lattice, whose opposite surfaces have significantly different	ANALYSIS OF SINGLE FIBER STRENGTH OF FIBERS AT VARIOUS PROCESSING STAGES Ashok Rajpurohit, Chomarat Textiles Industries This work addresses challenges in automatic single fibre characterization. It answers the question: textile processes such as spreading or NCF manufacturing affects the strength (and	PROCESSABLE, THERMALLY STABLE HYDROPHOBIC PHENOLIC- TRIAZINE RESINS FOR ADVANCED COMPOSITE APPLICATIONS Aristeidis Tsiamis, University of Bristol (ACCIS) The aim of the project is to combine a commercial phenolic- fitriazine (PT) oligomer with a liquid cyanate ester monomer to produce liquid processable, thermally stable,	, CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES Xiaoyu Zhang, Northwestern Polytechnical University This paper focuses the analytical and numerical method on indentation of sandwich structure considering shear effect and nonlinear collapse of core material.	I CARBON NANOTUBE INTERFACES Lulu Shen, Tongji University Self-sensing capability of carbon nanotube network played as in situ sensor on	P4214-6 OIL-WATER SEPARATION USING E JANUS MEMBRANES Avinash Baji, La Trobe University	BEHAVIOR OF A
1545-1550											innovative test method using thin ply carbon/ epoxy composites	P4211-7 POLYANILINE/ PHENOL- DIVINYLBENZENE RESIN FOR CFRP COMPOSITE WITH ENHANCED ELECTRICAL AND MECHANICAL PROPERTIES Yu Zhou, The University of Tokyo The present study focuses on phenolic- modified Polyaniline/ Divinylbenzene resin with enhanced electrical conductivity and mechanical property, which gives	P4212-7 MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES Yunqian Zhang, The University of Tokyo This study focused on the novel manufacturing progress of CFRTP sandwich structures and improved energy absorption ability of the sandwich structures to a great extent with low density.	SURFACE MOD- IFICATION AND FUNCTIONALIZA- TION METHOD WITH HIGHLY EFFICIENT AND ENVIRONMEN- TAL FRIENDLY Wencai Wang, Beijing University of Chemical Technology		

THURSD	AY 15 AUGUS	T													
Time	Plenary 2	Meeting room 205	Meeting room 206	Meeting room 208	Meeting room 209	Meeting room 210	Meeting room 211	Meeting room 212	Meeting room 213	Meeting room 214	Meeting room 215	Meeting room 216	Meeting room 217	Meeting room 218	Meeting room 219
1550-1620	Coffee break Exhibition hall														
1620-1820	4301 ONR Solid Mechanics Symposium	NSF-AFOSR Joint Workshop on Mechanics-Based Design of Intelligent Material Systems by Multimaterial Additive Manufacturing PART 4	4303 Nano-composites	4304 Process modelling and machining of composites	4305 Additive manufacturing	4306 Composite structures	4307 Sandwich structures and materials	4308 Fibers	4309 Fracture and damage	4310 Damage intolerance and ceramic matrix composites	4312 Civil engineering and ceramic matrix composites	4312 Hybrid composites	4313 Smart composite structures	4314 Joints	4315 Aerospace
1620-1640	4301-1 FRACTURE MECHANICS SOLUTIONS FOR INTERFACE CRACKS IN BI-MATERIAL AND SANDWICH BEAMS Roberta Massabo, University of Genova	by Multimaterial	4303-1 GRAPHENE BASED NANOCOMPOSITES FOR TRIBOLOGICAL APPLICATION Han Wang, Institute of Metal Research, Chinese Academy of Science In this work, graphene were used as lubricating additives for improving tribological behavior of graphene-based nanocomposites.		Jens Schlimbach, Institut Für Verbundwerkstoffe Gmbh FRPC are an ideal lightweight construction material	OF SMALL WIND TURBINE BLADES WITH FIBER-METAL LAMINATE SKIN Wei Sai, Nanyang Technological University Calculated the 20kW small wind turbine blade loading at wind speeds of 6m/s, 75m/s, 8.5m/s, and 10m/s. The stress in the airfoil was studied numerically and displayed in color codes to show the stress concentration area. The software	STRUCTURED COMPOSITES Yi-Kai Kao, National Tsing Hua University	4308-1 NANO-MAGNETITE DECORATED CARBON FIBRE FOR ENHANCED INTERFACIAL SHEAF STRENGTH Sobhan Fakhrhoseini, Carbon Nexus/deakin University	THROUGH- THICKNESS COMPRESSIVE STRESS AND POROSITY ON THE TENSILE STRENGTH		4311-1 VERTICAL HEAT TRANSFER OF ALUMINUM COMPOSITE CLADDINGS Kate Nguyen, Rmit University	4312-1 EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TENSILE BEHAVIOR OF CARALL FABRICATED WITH DIFFERENT FIBER ORIENTATION Rishi Kumar Gupta, Indian Institute of Technology Patna The tensile behaviors of carbon fiber aluminum laminates fabricated in three different configurations were studied using experiment, finite element simulation and maximum strength observed in Al/Oe/ Al/Oe/Al configuration with fiber pull out and delamination as a major failure mechanism.	COMPLEXES BASED LIGHT ACTIVATED SHAPE MEMORY POLYMER COMPOSITES Madhubhashitha Herath, University of Southern Queensland Incorporation of selectively triggered photothermal fillers and glass fibre reinforcements into shape memory polymer matrix has demonstrated the potential to develop light	Because the ability to inspect bonded joints is considered a high priority within the composites community, the Air Force Research	A315-1 DESIGN AND ANALYSIS OF THE SPACECRAFT COMPOSITE PAYLOAD ADAPTER WITH LOCAL SUPPORTS Evgeny Morazoy, University of New South Wales At The Australian Defence Force Academy Payload adapters are the structural elements that provide mechanical interface between spacecraft and a rocket launch vehicle. In this paper, new designs of the composite adapters are proposed and analysed.
1640-1700	4301-2 DEVELOPMENT OF A MODE!/ II/III TEST RIG FOR COMPOSITE LAMINATES AND SANDWICH FACE/ CORE FRACTURE CHARACTERIZATION Pietro Sabbadin, Technical University of Denmark The aim of this work consists in developing a novel test rig, which is inspired by the Shear Torsion Bending (STB) rig designed for unidirectional composites.		University The present work demonstrates highly sensitive strain sensors based on 3D graphene network including graphene aerogel and vertical graphene. Effects of the microstructure of 3D graphene on sensing	POLYMER MATRIX COMPOSITES IN SUPPORT OF PROCESS	Technology The present study has revealed the twisting mechanism of a continuous carbon fiber bundle in a process of printing a curved section and evaluated its effect on the mechanical	4306-2 DESIGNING FOLDABLE COMPOSITE STRUCTURES ON THE MICROMETRE SCALE Arthur Schlothauer, ETH Zürich The development of ultra-thin foldable composites for small scale applications (nano-satellites or heart-stents) is investigated with regard to maximizing stiffness whilst maintaining packagability.	4307-2 VIBRATION ATTENUATION PERFORMANCE OF HYBRID COMPOSITE LATTICE SANDWICH PANELS COMBINED WITH HIGH DAMPING MATERIALS Jin-Shui Yang, Harbin Engineering University	4308-2 SIMULTANEOUSLY INCREASING THE HYDROPHOBICITY AND INTERFACIAL ADHESION OF CARBON FIBRES: A SIMPLE PATHWAY TO INSTALL PASSIVE FUNCTIONALITY INTO COMPOSITES Chantelle Arnold, Deakin University The findings of this study dispel the common misconception of increased fibre wettablifty amounting to an increase in composite strength and provides a rapid method of installing surface functionality that facilitates adaptation of carbon fibres for new applications.	COMPOSITE IN CRASH Mohammad Rouhi, RISE SICOMP AB Energy absorption in crash in composite materials is strongly dependent on the layup, fibre architecture and type of resin, e.g. thermoplastic vs. thermoset. Thus, modelling of the crash behaviour of composites is highly influenced by the chosen composite material system, and constitutive models have to some extent to be tailored to fithe system under	OF THREE- DIMENSIONALLY WOVEN CARBON FIBER COMPOSITES Roberto Lopez-Anido, University of Manne Damage resistance of a 3D woven composite was compared with	Queensland Fibre reinforced Polymers (FRP) have gained increased popularity in civil infrastructure applications in recent years. A review of field applications where pultruded FRP sections have been	4312-2 TENSILE AND THERMAL PROPERTIES OF TI/ CFRP LAMINATES BASED ON POLYIMIDE RESIN Yubing Hu, Njust	REINFORCED SHAPE MEMORY EPOXY COMPOSITES Yayun Liu, National	ADHESIVE JOINTS FOR REPAIR Sridhar Isapalapati, Nanyang Technological	COMPOSITE FISHBAC MORPHING DEVICE FOR SPANWISE LIFT CONTROL Andres Rivero, Bristol
1700-1720	4301-3 MODE-II DYNAMIC CRACK INITIATION AND PROPAGATION BEHAVIOR OF CARBON FIBER/ EPOXY UNDER ELEVATED MOISTURE CONTENT Rodrigo Chavez, University of California San Diego The effect of moisture on the dynamic mode-II stress intensity factor of carbon fiber/ epoxy composites was studied. Notched carbon fiber/ epoxy specimens with high moisture contents were subject to dynamic fracture experiments . The samples were loaded under mode-II conditions and compared to samples with no significant moisture content.		4303-3 IMPROVED MECHANICAL AND BARRIER PROPERTIES OF GRAPHENE/ CARBON FIBRE- EPOXY HYBRID COMPOSITES Xudan Yao, The University of Manchester Graphene/carbon fibre/epoxy hybrid composites were fabricated through spray coating followed by resin infusion. Uniform distribution was achieved with barrier properties improved.	OF THE 3D-FLOW CHARACTERISTICS DURING COMPRESSION MOULDING OF SMC Gustaf Alnersson, Gestamp Hardtech Ab A numerical model for compression moulding of Sheet Moulding Compound based is presented, in which the charge is modelled as a fluid with a specified	REINFORCED POLYMER VIA COMPUTED TOMOGRAPHY Patrick Striemann, University of Applied Science Ravensburg- Weingarten	IMPLEMENTATION OF A TOROIDAL COMPOSITE PRESSUR VESSEL FOR HYDROGEN STORAGE Norbert Schramm, LSE GmbH The toroidal composite pressure vessel manufactured with new ring winding technology has a large mass saving potential (up to 30%) compared to cylindrical pressure vessels for hydrogen storage at 700 bar.	,		I INTERLAMINAR FRACTURE-BASED LIFE METHODS FOR BONDED AIRFRAME	COMPRESSION AFTER EDGE IMPACT SIMULATIONS IN	4311-3 AN ADAPTIVE BASE ISOLATOR FOR CLT STRUCTURES USING FIBER REINFORCED COMPOSITES Wei Chong Liao, Feng Chia University	GRADUAL FAILURE IN HYBRID	University of Auckland	4314-3 HIGH TEMPERATURI TENSILE STRENGTH ANALYSIS OF C/ SIC COMPOSITE AND SUPERALLOY BOLTED JOINT STRUCTURE Shuyuan Zhao, Harbin Institute of Technology In this work, a progressive damage model for 2D woven C/SiC composite was established to predict high temperature tensile performance and failure behavior of single-lap, single-bolt 2D C/SiC composite and superalloy joint. The variations of failure strength with imposed temperature and bolt preload were discussed for the studied bolted joint.	4315-3 E DESIGN AND FABRICATION OF W-SHAPED DEPLOYALBE COMPOSITE BOOM Jiagi Shi, Nanjing University of Aeronautics and Astronautics

MODELING OF LOW-PLOCATIVE OF LOW-PLOCATI	MPOSITE IGAMI FOR JIDIC ARTIFICIAL SCLES hael Dicker, versity of Bristol lising high- ormance fluidic autors by combining o composite erials. 4314-4 DISCRETE DAMAGE MODELLING OF COUNTERSUNK FASTENED LAMINATED COMPOSITES IN BEARING Alex Harman, Defence Science and Technology Group Agency Agency The aut investig deforme internal thermos CFRP L	ETAILED /ALUATION F VISIBLE EFORMATION IN FRP LAMINATES JBJECTED TO OUT- F-PLANE IMPACT JADING inin-ichi Takeda, Japan erospace Exploration
LOW-PLOCITY MULTION POLYMER/MOSS of Composition of Free Property of Property o	IDIDIC ARTIFICIAL SCLES COUNTERSUNK FASTENED LAMINATED COMPOSITES IN BEARING Alek Harman, Defence Science and Technology Group The aut investig deforme internal thermos CFRP of the April 19 and the Applications of the Applicat	F VISIBLE ETP LAMINATES JBJECTED TO OUT- F-PLANE IMPACT DADING in-ichi Takeda, Japan rospace Exploration pency we stigated visible formation and remal damages of ermoset laminated ERP owing to Out-of-
OF IN-PLANE COMPRESSIVE CHARACTERISTICS OF HEXAGONAL AND AUXETIC AND AUXETIC HONEYCOMBS WITH FIBRE REINFORCEMENTS Zafer Kazanc, Queers University of Loriestly of Loriestly of Lementary of the development of carbon fiber-reinforced high-temperature resistant thermoplastics featuring processability in melt mixing, printiability for fused deposition modeling (FDM), and high CHARACTERISTICS OF IN-PLANE ON THE BUCKLING SIMULATION OF COMPOSTE SISTANT THERMOPLASTIC COMPOSTE SANDWICH SIMULANALYSIS TO REPRESENT STRENGTH REINFORCEMENTS COMPOSTE SIN Na SANDWICH STRUCTURES ON THE BUCKLING SIMULATION OF COMPOSTE STRUCTURES ON THE BUCKLING SIMULATION OF COMPOSTE SANDWICH STRUCTURES ON THE BUCKLING SIMULATION OF COMPOSTE SANDWICH ON SHIVES ON THE BUCKLING SIMULATION OF COMPOSTE SANDWICH OF COMPOSTE SANDWICH OF COMPOSTE USING OF TRANSPORT ARTRIALS - A FINITE ELEMENT STUDY OF RIAMSPORT ARTRIALS - A FINITE ELEMENT STUDY OF RIAMSPORT ARTRIALS - A FINITE ELEMENT This work presents the development of carbon fiber-reinforced high- temperature resistant thermoplastics featuring processability in melt mixing, printability for fused deposition modeling (FDM), and high OF COMPOSTE SANDWICH OF COMPOSTE SING ORD THE BUCKLING SIMULATION OR FIRSTENGTH BEHAVIOUR OF ORD STRUCTURES OR TRANSPORT BEHAVIOUR OF ORD STRUCTURES OR TRANSPORT BEHAVIOUR OF ORD STRUCTURES OR TRANSPORT BEHAVIOUR OF OR TRANSPORT BEHAVIOUR OF OR TRANSPORT BEHAVIOUR OF ORD STRUCTURES OR TRANSPORT BEHAVIOUR OF OR TRANSPORT BEHAVIOUR OF OR TRANSPORT BEHAVIOUR OF OR TRANSPORT OR TRANSPORT BEHAVIOUR OF OR TRANSPORT ARTRIALS - A FINITE ELEMENT This work presents the development of carbon fiber-reinforced high- inversity of Chemical Twenty of Transport Transport The BUCKLING ON SHIPMENT ON	DOINING OF AGEING RESISTANT STRUCTURES BASE ACTIVE SHAPE MORY POLYMER MPOSITES ghua Guan, Centre Structures, Harbin itute of Technology nis study, three gramming hods of 4D ted composites structures based external loads, rnal pre-strain and colasticity were sented investigated	ODELING OF DID EFFECT ON ATRIX-DOMINATEL TRENGTH OF CFRP MINATES iggeli Aratama, iwasaki Heavy dustries, Ltd. bid locations and mensions were attistically investigated ing X-ray CT images, model was proposed the effect of voids the reduction of atrix-dominated ength of CFRP
4304-6 PREDICTING ADDITIVE MANUFACTURING OF COMPOSITE AND ATTEM POLICY, ETHAL SUBJECTED TO DIRECT COMPOSITES AND APPLICATIONS (CFM), University of Southern Queensland Substantial Substan	REE- IENSIONAL NSTITUTIVE DEL OF SHAPE MORY POLYMER MOPSITES OF METAL AND NSIDERING FIE-DEPENDENT HAVIOUR AUKIM, Seoul INCREASING THE STRENGTH OF NOTECHAPICALLY JOINED CONNECTIONS OF METAL AND FIBER-REINFORCED PLASTICS USING A STRUCTURED AUXILIARY JOINING	

FRIDAY	16 AUGUST										
Time	Plenary 2	Meeting room 206	Meeting room 209	Meeting room 212	Meeting room 213	Meeting room 214	Meeting room 215	Meeting room 216	Meeting room 217	Meeting room 218	Meeting room 219
0800-0805 0805-0850	Day 5 Welcome & Announcemen		INE CTRUCTURES Vana Baianak	se, United States Office of Naval Res	occap USA						
	Plenary 2	GES IN COMPOSITES FOR MAN	INE STRUCTURES Tapa Najapan.	se, United States Office of Navai Nes	scarcii, USA						
0850-0900 0900-1040	Move to concurrent sessions 5101	5103	5105	5108	5109	5110	5111	5112	5113	5114	5115
	Polymer matrix materials	Defence	Aerospace	Composite structures	Fracture and damage	Rail	Biocomposites	Composite materials	Process modelling	Joints	Sandwich structures and materials
0900-0930	KEYNOTE 2: MANUFACTURIN (Meeting room 212 KEYNOTE 3: RESIN INFUSION KEYNOTE 4: MULTI-SCALE MO Tomonaga Okabe,	COMPOSITES FOR AEROSPAC	AND WHY THEY OCCUR, AND I E <u>Michael Edwards</u> , Boeing Austral ED PLASTIC COMPOSITES: FRO	DO THEY MATTER? Simon Bickert							
0930-0940	Move to concurrent sessions 5101-1	5103-1	5105-1	5108-1	5109-1	5110-1	5111-1	5112-1	5113-1	5114-1	5115-1
	BACTERIAL CELLU-LOSE-POLYCAPROLACTONE COMPOSITES AS ENVIRON-MENTAL MATERIALS Takao Aoyagi, Nihon University We have been studying on effective defibration of bacterial cellulose (BC) and recently found that polycaprolactone-grafted BC suspension was very useful to prepare a thermo-responsive membrane to control drug permeation.	MODELLING COMPACTION VARIABLITY IN OUT-OF-AUTOCLAVE PREPREG LAMINATE Daria Bontch-Osmolovskaia, USQ This paper proposes an experimental method for imaging the flow of trapped air through a OOA prepreg laminate stack. The goal is to quantify the volume of air, trapped between the plies during the manufacturing process which will cause the undesirable porosity in the cured part.	VULNERABILITY OF COMPOSITE STRUCTURE FUSELAGE UNDER INTERNAL BLAST EFFECTS: MITE APPROACH Francis Collombet, Clement Ader Institute	TRUNCATED SPHERICAL COMPOSITE SHELL FOR TRANSMITTING ELECTROMAGNETIC WAVE AND BEARING CAPACITY UNDER WIND LOAD Lili Tong, Harbin Engineering University In this paper, thickness of a sandwich radome which consistis of two dense dielectric skins by a less dense core having a lower relative dielectric constant than the skin are determined by Maxwell equations for highest transmission coefficients and stiffness.	NEW INTERFACE ELEMENT WITH NON COINCIDENT NODES TO SIMULATE DISCRETE DAMAGE IN COMPOSITE LAMINATE Antoine Trellu, Isae Supaero - Segula Sad	COMPOSITE MATERIALS FOR THE RAILWAY SECTOR Roberto Guzman De Villoria, FIDAMC	EFFECT OF DIFFERENT SURFACE TREATMENTS ON CURAUA FIBERS Linconl Teixeira, University of Brasilia	FORMABILITY SIMULATION OF STEEL-POLYMER SANDWICH COMPOSITES Sungjin Han, Seoul National University Sandwich structures and materials	VIRTUAL AND EXPERIMENTAL HYBRID THERMOFORMING OF GRIF AND ALUMINUM Michael Grubenmann, inspire IVP A hybrid thermoforming process of glass fibrereinforced thermoplastic and aluminum considering process parameters, tool geometry and validation experiments is experimentally and virtually investigated.	INTERLOCKING INTERFACE DESIGN IN METAL-CFRP JOINTS USING A MONTE- CARLO SIMULATION APPROACH Fabian Günther, Tu Dortmund University In experimental single lap joint test and FEM simulations the qualitative and quantitative positioning of mesoscale pin structures in interlocking CFRF joints are developed by a Monte-Carlo approach.	STUDY ON THE LOW- VELOCITY IMPACTING RESPONSES AND RESIDUAL PROPERTIES OF COMPOSITE SANDWICHES Xintao Huo, Hunan University This paper revealed the impacting mechanism of foam sandwich structures. Numerical and analytical models were developed to support the design of structural crashworthiness. Besides, the residual properties were also considered
1000-1020	5101-2 EPOXY NETWORKS DERIVED FROM NOVEL AMINES Russell Varley, Deakin University	5103-2 BALLISTIC IMPACT ON COMPOSITE-COVERED CERAMIC AND THE EFFECT ON PROJECTILE FRAGMENTATION Bent B. Johnsen, Norwegian Defence Research Establishment (FFI) A composite cover on alumina can improve the ballistic performance. The highest effect was with a cover on the back of the alumina, and not on the strike face.	5105-2 INFLUENCE OF SHOCKWAVE ON LIGHTNING DAMAGE OF CFR LAMINATE Yoshiyasu Hirano, Japan Aerospace Exploration Agency		5109-2 COMPARATIVE ANALYSIS OF MODELLING TECHNIQUES FOR IMPACT ON THICK FABRIC COMPOSITE STRUCTURES Niels Van Hoorn, NLR - Netherlands Aerospace Centre A comprehensive characterisation of damage due to impact events on thick fabric composite structures remains an elusive and challenging task. Three methods with varying degrees of computational complexity are developed to simulate and predict a representative impact problem.	5110-2 INFLUENCE OF ENDPOST MATERIALS ON SUB- SURFACE RAILHEAD MATERIAL DAMAGE OF INSULATED RAIL JOINTS DUE TO WHEEL/RAIL CONTACT LOADINGS Nirmal Mandal, Central Queensland University	511-2 BAMBOO FIBRE COMPOSITES - MOISTURE RESISTANT AND DURABLE Aart Willem Van Vuure, KU Leuven Bamboo fibres show high potential for use in composites due to combination of good mechanical properties, abundant availability, high Carbon capture capability and the fact that they keep their mechanical properties at high humidity.	BASALT FIBRE REINFORCEI POWDER EPOXY	5113-2 EVALUATION AND SIMULATION ON THE D MOLDING PROCESS OF CHOPPED CARBON IF IBER TAPE REINFORCED THERMOPLASTICS Tiansheng Han, The University of Tokyo This research aims to evaluate the compression molding outcome of a specific short fiber ROS CFRTP named as UT-CTT utilizing the analysis of charge ratio and thickness of free-edge samples and simulate the process with a new modeling technology implemented in LS-DYNA", and eventually leads to mechanical property prediction based on the pre-set molding conditions.	its effect is characterised for a composite-to-metal joint under lap shear loading.	AND COBALT PORPHYRIN AS ELECTRO-CATALYST TO OXYGEN REDUCTION d Jinpeng Li, East China University of Science and Technology
1020-1040		UNDER IMPACT LOADING <u>Behjat Ansari</u> , University of Bristol A finite element model is developed to predict energy absorption at the interfaces	Jason Lee, University of Glasgow This article discusses improved laminate performance relating to both in-plane properties (e.g. first ply failure) and out-of-plane properties (e.g. initial buckling) using double angle-ply laminates (with ± Ψ and ± Φ ply orientations), which are stiffness	RANDOMLY ORIENTED STRANDS YI Wan, The University of Tokyo The internal geometry property, which is considered the key factor that combines the inner structure with mechanical	5109-3 LOCAL AND NONLOCAL CONTINUUM DAMAGE SIMULATION OF IMPACT AND COMPRESSION AFTER IMPACT TESTS ON CFRP LAMINATES Reza Vaziri		5111-3 COMPOUNDING NATURAL FIBERS WITH HIGH PROCESS TEMPERATURE- THERMOPLASTICS WITH SOLID-STATE SHEAR PULVERIZATION: FLAX/ POLYAMIDE 6 Katsuyuki Wakabayashi, Bucknell University A chilled twin screw extrusion process called Solid-State Shear Pulverization effectively compounds natural fibers with polymers that are conventionally incompatible because of their high processing temperature.	5112-3 NEW HYBRID MATERIALS BASED ON CARBON NANOTUBES AND METAL ALLOYS Damian Kulawik, Jan Dlugosz University Hybrid composites	5113-3 STRENGTH ANALYSIS USING THE RESULT OF COMPRESSION MOLDING SIMULATION FOR LONG CARBON FIBER REINFORCED THERMOPLASTICS Shinya Hayashi, JSOL Corporation New compression molding simulation techniques for long fiber CFRP using a beam-in- adaptive solid coupling functior and a component strength analysis using the deformed beams are presented.		5115-3 COMPOSITE SANDWICH OPTIMIZATION OF A STIFFENED PANEL STRUCTURE Yasser M. Meddaikar, DLR - German Aerospace Center Optimization strategy for sandwich composites based on lamination parameters, applied to a stiffened panel problem.
1040-1110	Coffee break Exhibition hall										
1100-1230	5201 Dynamic properties and fracture	5203 Multiscale modelling	5205 Advanced manufacturing and automation	5208 Composite structures	5109 Fracture and damage	5210 Damage tolerance	5211 Biocomposites	5212 Interfaces & interphases	5213 Process modelling	5214 Joints	5215 Sandwich structures and materials
1110-1130	NUMERICAL INVESTIGATION ON THE LOADING METHODS AND SIZE EFFECT FOR COMPRESSION RESPONSE OF BRAIDED COMPOSITES Peng Liu, Northwestern Polytechnical University The effects of sample size and loading methods on compression response of the triaxially braided composite are numerically investigated using the meso- scale finite element method.		5205-1 COMPOSITE COIL SPRINGS MADE BY 4D PRINTING METHOD Suong Hoa, Concordia University Characteristics of composite coil springs made by the method of 4D printing are presented. In this method, the structure changes from initial simple shape to the final complex shape after curing and cooling.	Glasgow	5209-1 DETERMINING THE TRUE TENSILE FAILURE STRAIN OF CARBON FIBRE COMPOSITES AND FACTORS AFFECTING IT Michael Wisnom, Bristol Composites Institute (ACCIS) Novel tests show that specimen volume and ply thickness have a much greater effect on tensile failure strain of carbon-epoxy than other stress components.	5210-1 A PLATE MODEL FOR DAMAGE TOLERANCE PREDICTION AND DESIGN FOR MULTI-AXIAL LOADING Mark Nielsen, University of Bath A new semi-analytical method for predicting the strain at which delamination propagation will initiate following sublaminate buckling, Adaptation for design optimisation is included, showing benefit of non- standard surface plies.	MICROSTRUCTURE Rong Wang, Xi'an Jiaotong University The role of PTD microstructure on the fracture properties of human dentine is investigated by analysis	CARBON FIBER SURFACE AND ENHANCING THE INTERFACIAL PROPERTIES OF COMPOSITES Shu Xiong, Beihang University	5213-1 MODELLING OF THE HIPERDIF METHOD FOR MANUFACTURING RECYCLED COMPOSITES USING SPH Samantha Huntley, University of Bristol HiPerDiF enables remanufacturing reclaimed carbon fibres into comercially- valuable products by ensuring a high-level of fibre alignment. The fluid dynamic alignment process is modelled using SPH and the model is validated.	5214-1 COHESIVE ZONE MODEL IDENTIFICATION ON MODE I BONDED ASSEMBLY: SENSITIVITY AND ROBUSTNESS ANALYSIS Agathe Jaillon, Isae-supaero	5215-1 INTERFACIAL ADHESION BETWEEN CARBON FIBRE THERMOPLASTIC COMPOSITES AND FOAM IN SANDWICH STRUCTURES Le Quan Nagoc Tran, Singapore Institute of Manufacturing Technology, A-STAR In this study, several investigations of the skin- core interface of sandwich structures are conducted, including physico-chemical interactions based on surface energies and mechanical interlocking influenced by foam surface morphology.

FRIDAY 1	6 AUGUST										
Time			Meeting room 209		Meeting room 213		Meeting room 215	Meeting room 216	Meeting room 217		Meeting room 219
1130-1150	STRAIN-RATE ON THE TRANSVERSE COMPRESSIVE STRENGTH OF UHMWPE COMPOSITES Jason Parker, Johns Hopkins University	5203-2 INFLUENCE OF FIBER ORIENTATION RECONSTRUCTION ON MECHANICAL PROPERTIES OF SHORT FIBER REINFORCED THERMOPLASTICS Kevin Breuer, Chair of Plastics Technology Fiber orientation is reconstructed by spherical harmonics as well as by method of maximum entropy. Subsequently, representative volume elements are generated to investigate the influence on the effective composite properties.	COMPOSITES Bruce Cartwright, Pacific Engineering Systems Internationa Pty Ltd	LATTICE MATERIALS AND / IT'S THREE DIMENSIONAL FAILURE MECHANISM MAPS Jian Xiong, Center for Composite Materials and Structures, Harbin		5210-2 LOW VELOCITY IMPACT MODELLING ON LAMINATE COMPOSITE: AN INDUSTRIAL APPLICATION Patrick Peres, ArianeGroup Industrial validation methodology of low velocity impact computation based on experimental results with CFRF for different sizes of sample.	COMPOSITES PREPARED BY POWDER METALLURGY Kun Yu, School of Materials Science and Engineering, Central South University	5212-2 PHOSPHORUS BASED A-AMINO ACID MIMETIC FOR ENHANCED FLAME RETARDANT PROPERTIES IN AN EPOXY RESIN Melissa Stanfield, Deakin University This project employs surface electroinitiated emulsion polymerisation (SEEP) process to modify carbon surfaces; focusing on generating multilayer interfaces to induce novel physical and chemical properties in carbon fibre reinforced composites. This process is rapid, scalable, and able to be applied to any conductive surface.	are performed to observe the resin flow through the tri-axial braided preform, including the	BEHAVIOR OF WOVEN- CF/PPS LAMINATES USING HIGH FREQUENCY CONTINUOUS INDUCTION HEATING Kurima Kazuki, KINDAI University This study clarified the behavior of induction welding of woven-	
1150-1210	5201-3 EXPERIMENTAL CHARACTERIZATION OF STRAIN-RATE SENSITIVITY ON FAILURE PROPERTIES OF CARBON/EPOXY COMPOSITE Fabien Coussa, Onera		5205-3 MULTIPLE-FRONT POLYMERIZATION FOR RAPID COMPOSITE MANUFACTURING Polette Centellas, University of Illinois At Urbana-champaign Frontal polymerization offers significant cure time savings over conventional composite manufacturing, Applying a local heat trigger initiates polymerization; therefore, using multiple triggers further reduce cure times and enable large- scale manufacturing.	FOAM FILLING ON MECHANICAL BEHAVIORS OF	5209-3 A SIMPLE MODELING APPROACH TO PREDICTING DAMAGE PROGRESS IN UNIDIRECTIONALLY ARRAYED CHOPPED STRAND LAMINATES Shigeki Yashiro, Kyushu University	COMPOSITES Ronny Sachse, Institut für Flugzeugbau - Universität Stuttgart This paper investigates the influence of laminate thickness on damage initiation and propagation during low velocity impact. An enhanced cohesive zone model and impact	5211-3 TUNING THE MECHANICAL AND THERMO- MECHANICAL RESPONSES OF BIO NANOCOMPOSITE FILMS OF PLASTICIZED POLYLACTIC ACID WITH HALLOYSITE NANOTUBES Swati Sharma, IIT DELHI Poly-lactic acid (PLA), a polyester derived from natural resources had been modified in this work to improve its ductility with the help of plasticizer. To compensate for the decrease in tensile strength, halloysite nanotubes (HNT) have been incorporated in plasticized PLA	У	5213-3 EFFECT OF CURING CYCLE ON THE STRENGTH OF UAV COMPOSITE WING STRUCTURES Zhendong Liu, School of Aeronautics, Northwestern Polytechnical University, Xi'an, China	5214-3 CARBON FIBER/PEEK RIVETS FOR FASTENING COMPOSITES STRUCTURES Louis Laberge Lebel, Polytechnique Montreal C/PEEK rivets were molded-in CFRP and Steel joints by Joule heating and pressure. The tested shear strength is higher than typical aerospace grade aluminum rivets.	SCB TEST SPECIMEN Kazuya Takaryu, Kanazawa Institute of Technology Points to be noted on applying an analysis model named "beam on Vlasov foundation
1210-1230			CONSOLIDATION TO THE DEVELOPMENT OF A REIN-	5208-4 DESIGN AND COPPRESSIVE PROPERTIES OF LONG-LASS-FIBER REINFORCED THERMOPLASTIC OCTAHEDRAL LATTICE STRUCTURE Yueqing Zhao, Beihang University In this paper, compressive properties of diverse octahedral lattice structures assembled by nonplanar cross-shaped parts by mechanical interlocking method were investigated.	Arief Yudhanto, Kaust (king Abdullah University of Science	5210-4 ENHANCING THE DAMAGE TOLERANCE OF SRPP/CFPP HYBRID COMPOSITES VIA A BIO-INSPIRED DESIGN Lorenzo Mencattelli, Imperial College London We successfully designed micro-engineered SRPP/ CFPP structures via tailoring laser-cut patterns to meet different damage tolerance requirements at different locations within the same structure, creating engineering solutions of significant industrial impact.	ACHITECTURES TOWARD IMPROVING DAMAGE RESISTANCE ON CFRP LAMINATES Luis Amorim, University of Minho Under low velocity impact, the bioinspired CFRP laminates proposed have shown more tolerance to damage onset and less prone to larger damages, when compared to a standard			AND METAL SHEET	5215-4 BUCKLING EXPERIMENTS AND ANALYSIS OF THE SOFT-CORE SANDWICH BEAMS Dongiian Zhang, School of Aeronautics, Northwestern Polytechnical University
1230-1330	Lunch Exhibition hall						·	'		'	
1330-1510	5301 Polymer matrix materials	5303 Mechanics of composites	Advanced manufacturing and automation	5308 Fibers		5310 Repair			5313 Process modelling	5314 Aerospace	5315 Structural analysis and optimisation
1330-1350	RETARDANT ON THERMAL STABILITY AND FLAME	5303-1 A SOLUTION TO THE DOUBLE CRACK'S J-INTEGRAL IN THE PLAIN PLATE Huan Li, Harbin Engineering University		5308-1 TENSILE PROPERTIES OF NANOCELLULOSE REINFORCED SILKWORM SILK COMPOSITE FIBERS Chen Wu, Tohoku University		5310-1 TENSILE STRENGTH PREDICTION OF BOLTED REPAIR ON COMPOSITE LAMINATE Xiang Li, China Academy of Engineering Physics			of Mechanical Engineering and Science The present study analyzed the heat transfer and viscoelastic deformation of the materials	TO QUANTIFY SHAPE COMPLEXITY OF COMPOSITE AEROSPACE PARTS t Mohammad Tanvir Chowdhury, The University of Nottingham This paper introduces a new metric to quantify the Shape	5315-1 A NEW ANALYTICAL MODEL TO PREDICT THE STIFFNESS OF FILAMENT WOUND COMPONENTS Michael Heitzmann, The University of Queensland
1350-1410	isothermal crystallization kinetics with a coupled kinetic equation.	Gediminas Monastyreckis, Kaunas University of Technology This study was aimed to investigate the mechanical properties of MXene/polymer nanocomposites. The finite element modelling of a single MXene flake and MXene/polymer nanocomposite was performed	FOR COMPOSITE STRUCTURES Florian Helber, Institute of Aircraft Design	5308-2 HIGH-PERFORMANCE CELLULOSE NANOCOMPOSITE FIBRES AS SUSTAINABLE COMPOSITE REINFORCEMENT Chenchen Zhu, University of Bristol		5310-2 DESIGN AND ANALYSIS OF SCARF REPAIRS WITH CIRCULAR AND ROUNDED RECTANGULAR REPAIR CUTOUTS Sridhar Idapalapati, Nanyang Technological University			Solitarian Marian Solitarian Solitarian Multiscale Modeling of THERMOSET COMPOSITE PROCESS-INDUCED RESIDUAL STRESSES Marianna Meiaru, Michigan Technological University A novel multi-scale Integrated Computational Material Engineering (ICME) approach to predict the evolution of residual stress during curing of thermoset composites is presented.	OF FOLDABLE SHELL EXTENDIBLE TUBE OF UNIDIRECTIONAL COMPOSITE Yuki Doto, Department of Aeronautics and Astronautics, University of Tokyo, Tokyo, Japan About a new deployable structure made of shells and a film, FEM and experiments	5315-2 ON THE PARAMETERIZATION OF ORTHOTROPIC LAMINATES TO OPTIMIZE COMPOSITE STRUCTURES François-Xavier Irisarri, Onera This presentation deals with the optimization of orthotropic laminates using lamination parameters. An additional variable defines the orientation of the material axes of symmetry. Link is made with polar parameters.

93

Northern Ireland

Dates: 1st - 6th August 2021

Visit our stand to win free registration and accommodation at **ICCM 23 Belfast**

www.iccm23.org

visit **Belfast**

POSTER PROGRAM

MONDAY 12 AUGUST POST	TER SESSION		
Poster title		Presenter name	Poster n
Additive manufacturing			
DEVELOPMENT OF COMPOUND MELT EXTRUINANOFILLERS DURING EXTRUSION	DED NANOCOMPOSITE FDM FILAMENT BY CONTINUOUS SYRINGE PUMPING OF DISPERSED	Joshua Brooks	P001
	R FUSED FILAMENT FABRICATION USING TOOL PATH REVERSING	Vishal Hayagrivan	P002
FLEXURAL FATIGUE STRENGTH OF 3D-PRINTE	D CONTINUOUS CARBON FIBER REINFORCED THERMOPLASTIC LAMINATES	Morihumi Inaba	P003
3D PRINTING OF CONTINUOUS SIZED CARBOI		Tengfei Liu	P004
INTERLAYER BONDING BEHAVIORS OF 3D PRI	NTED CONTINUOUS CARBON FIBER REINFORCED PEEK COMPOSITES	Meng Luo	P005
DEVELOPMENT OF A TEST BENCH FOR FUSED) FILAMENT FABRICATION	Alexander Matschinski	P006
IMPROVING THE STIFFNESS OF HIGH RESOLU		Chow-shing Shin	P007
EFFECT OF LASER RE-MELTING PROCESS ON METAL MATRIX COMPOSITES	THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ADDITIVELY MANUFACTURED	Jianshen Wang	P008
INSTRUMENTED IMPACT BEHAVIOR OF PANEL	S PRODUCED BY ADDITIVE MANUFACTURING	Thomas Whitney	P009
Advanced manufacturing and automation			
EFFECTS OF CURE CYCLE PRESSURE PROFILE FIBRE COMPOSITES	AND HEATING RATE ON PROPERTIES OF OUT-OF-AUTOCLAVE RAPIDLY CURED CARBON	Sima Kashi	P010
HIGLY AUTOMATED MANUFACTURING PROCE	SS OF LARGE AIRPLANE CFRP STRCTURES	Marcin Malecha	P011
CONTINUOUS TAPE LAYUP MOLDING BEHAVIO	OR OF CFRTP USING NEAR-INFRARED HEATING AND INDUCTION HEATING	Naoki Nakata	P012
IMPREGNATION PROCESS IN OPEN MOLDING	METHOD USING MULTI-FILAMENT WINDING	Kazuma Otake	P013
Aerospace			
MODE I FRACTURE TOUGHNESS OF 3D COMP	OSITES REINFORCED WITH METAL OR CARBON Z-BINDERS	Sadaf Abbasi	P014
WARPAGE BEHAVIOUR OF DISCONTINUOUS C	F/PEEK THIN PLATES	Natassia Batista	P015
EXPERIMENTAL STUDY ON INTER-YARN FRICT	ION CHARACTERISTICS OF STF-KEVLAR FABRICS WITH DIFFERENT MASS CONCENTRATIONS	Wei Chen	P016
CF/MODIFIED-PEEK COMPOSITES FOR AIRCR.	AFT	Takahiro Hayashi	P017
EFFECTS OF PROCESS CONDITIONS ON AERO	SPACE GRADE EPOXY/CARBON FIBRE COMPOSITE PROPERTIES	Matt Jennings	P018
OBTENTION OF A CARBON-CARBON COMPOS	SITE MATERIAL FOR ITS USE IN EXPANDING NOZZLES FOR AEROSPACE VEHICLES	Liliana Maricarmen Lopez	P019
QUANTIFYING AND MINIMISING THE EFFECTS SPACECRAFT	OF THE ROOT CONDITION OF DRUM DEPLOYED COMPOSITE TUBULAR BOOMS FOR	Jason Shore	P020
MINIMIZATION OF THE OUT-OF-PLANE THERN	MAL DEFORMATION OF CFRP REFLECTORS BY STACKING SEQUENCE OPTIMIZATION	Shun Tanaka	P021
VIBRATION FREQUENCY DESIGN AND STUDY	OF COMPOSITE FUSELAGE STRUCTURE	Kaijian Wang	P022
DESIGN AND ANALYSIS OF FILAMENT-WOUND	COMPOSITE PRESSURE VESSELS BASED ON MESH WINDING THEORY	Hui Xu	P023
A COMPUTATIONALLY EFFICIENT APPROACH I	FOR ANALYSING THE ONSET OF FAILURE IN AEROSPACE COMPOSITE STRUCTURES	Shibo Yan	P024
Automated fibre placement			
	METHOD FOR CRACK INITIATION AND PROPAGATION IN FIBER REINFORCED COMPOSITE	Nikhil Garg	P025
INTRA-LAMINAR AND INTER-LAMINAR PROGF	RESSIVE FAILURE ANALYSIS OF AFP COMPOSITE ON A TOW LEVEL	Xie Li	P026
PEFORMANCE MONITOR AND PREDICTION OF	F A BIAXIALLY LOADED THIN COMPOSITE TUBE	Md Shamsuddoha	P027
TOOLPATH STRATEGY & GENERATION FOR RO	BOTIC FIBRE PLACEMENT ON CURVED SURFACES	Nahaad Vaheed	P028
SIMULATION AND TEST VERIFICATION OF PRE	PREG PEEL FOR PLACEMENT PROCESS	Xianzhao Xia	P029
Automotive			
SIMULATION AND EXPERIMENTS FOR MECHA	NICAL PROPERTIES DOMINATING THE PRESS MOLDING USING CFRTP PREFORMS	Yuji Abo	P030
CHARACTERIZATION OF UNDAMAGED AND DA CHARGING OF ELECTRIC VEHICLES	AMAGED CARBON FIBER COMPOSITES IN ELECTROMAGNETIC FIELDS FOR INDUCTIVE	Tobias Mayr	P031
DEVELOPMENT OF BENDING PROCESS FOR T	HERMOPLASTIC COMPOSITE PIPE DURING PULTRUSION MOLDING PROCESS	Asami Nakai	P032
PRESS AND INJECTION HYBRID MOLDING OF	GF/PP HAT-SHAPED MEMBER AND EVALUATION OF ITS BENDING PROPERTY	Kazuto Tanaka	P033
DESIGN AND ANALYSIS OF COMPOSITE CARB	ON FIBER REINFORCED ANTI-COLLISION BEAM BASED ON ANSYS ACP	Chuanxiang Zheng	P034
Bio-composites			
FACTORIAL STUDY OF MATERIAL AND PROCES COMPOSITES	SS PARAMETERS ON FIRE AND MECHANICAL PROPERTIES OF WOOL AND WHEAT GLUTEN	Nam Kyeun Kim	P035
BAMBOO BASED BIO-COMPOSITES UNDER DA	AMAGED AND UNDAMAGED FRACTURE	Wen Liu	P036
ADVANCED QUALIFICATION OF COMBOO - A E		Andreas Loth	P037
	ON MECHANICAL PROPERTIES OF BIOMATERIAL-REINFORCED-POLYPROPYLENE	Anh Dung Ngo	P038
	SILVER INCORPORATED CHITOSAN THIN FILMS	Sreedevi Vallabhapurapu	P039
Bio-inspired composites			
	ED SMART MATERIALS WITH REVERSIBLE ADHESION	Ying Chu	P040
	ZATIONS OF MAN-MADE NACRE-LIKE COMPOSITES	Yingbang Yao	P041
BONE TISSUE SCAFFOLD BASED ON SHAPE M		Wei Zhao	P042
Biomedical			
	DENTAL COMPOSITES DURING DENTAL RESTORATION	Nak-sam Choi	P043
	LIZATION FOR 3D PDMS SCAFFOLD VIA SURFACE MODIFICATION	Baek Ji Hun	P044
	COMPLEXES AS MULTIFUNCTIONAL THERANOSTIC AGENTS	Tae Eun Kim	P045
CARBON QUANTUM DOTS USING POLYPHENO		SeokWon Park	P046
Ceramic matrix composites			
	F CARBON-CARBON COMPOSITE BY SILICON CARBIDE COATING	Kee Sung Lee	P047
OXIDATION AND INDENTATION RESISTANCE O		o o o o o o o o o o o o o o o o o	. 57/
	JICAL PROPERTIES OF AFROGEL/FIBROUS ZIRCONIA CERAMIC COMPOSITES	Jingiing Sun	P048
HIGH-TEMPERATURE THERMAL AND MECHAN	NICAL PROPERTIES OF AEROGEL/FIBROUS ZIRCONIA CERAMIC COMPOSITES ROPHORETIC DEPOSITION COMBINED WITH POLYMER INFILTRATION AND PYROLYSIS	Jingjing Sun Honglei Wang	P048 P049

Poster title	Presenter name	Poster r
Ceramic matrix composites		
BEHAVIOR OF GFRP BARS SUBJECTED TO DYNAMIC LOADING	Farid Abed	P050
RESIDUAL BEARING CAPACITY OF RC MEMBER AFTER EXPOSURE TO HIGH TEMPERATURE	Lili Bai	P051
IMPROVEMENT OF PENETRATION RESISTANCE OF AMINE CURED EPOXY RESIN FOR CONCRETE LINING BY ION EXCHANGE ZEOLITE UNDER SULFURIC ACID	Tetsuya Sakai	P052
Composite Materials: Route to Impact	<u>'</u>	
UNDERSTANDING RESIDUAL STRESS IN RAPIDLY CURED CARBON FIBRE REINFORCED COMPOSITE	Saman Ghadi	P053
EVALUATION OF THERMOELECTRIC PROPERTIES OF GRAPHENE-ENABLED REINFORCED POLYMER COMPOSITES: A PROFICIENT MOVE TOWARDS ADVANCED STRUCTURAL APPLICATIONS	Azadeh Mirabedini	P054
A STUDY ON HEAT TRANSFER EFFECT OF HEAT SINK FOR DIFFERENT COMPOSITE MATERIALS	Meehye Oh	P055
Composites structures		
THERMO-MECHANICAL BEHAVIOUR OF MICROWAVE-CURED CARBON NANOTUBES-BASED POLYMER COMPOSITES	Gaurav Arora	P056
STIFFENED COMPOSITE PARTS BY RESIN INFUSION PROCESS FOR AIRCRAFT APPLICATION	Oyoung Choi	P057
TTT CURE DIAGRAM FOR AN AMBIENT TEMPERATURE CURING EPOXY-AMINE THERMOSET	Wannakuwattewaduge Minolie Shanelle Fernando	P058
DETERMINATION OF MODE II INTERLAMINAR FRACTURE TOUGHNESS ENHANCEMENT OF UNIDIRECTIONAL CARBON FIBER-REINFORCED MATRIX COMPOSITES WITH GRAPHENE AND MULTI-WALLED CARBON NANOTUBES	Nongyue Gao	P059
A TRISTABLE CROSS-SHAPED UNSYMMETRIC FIBER-REINFORCED CROSS-PLY LAMINATES: EXPERIMENTAL AND SIMULATION METHODS	Yang Li	P060
THE ENERGY-ABSORBING CHARACTERISTICS OF COMPOSITE TUBE-REINFORCED ALUMINUM FOAMS UNDER COMPRESSION	Zheng Liu	P061
A NUMERICAL MODEL FOR COUPLING HYGRO-MECHANICAL PHENOMENA IN COMPOSITE MATERIALS	Mamadou Abdoul MBACKE	P062
STUDY ON THE PROPERTY OF LIGHTWEIGHT BUILDING STRUCTURE	Comfort Mensah	P063
NONLINEAR FINITE ELEMENT ANALYSIS OF COMPOSITE BOLTED LAP-JOINTS : EXPERIMENTAL VS . NUMERICAL TESTS	Benoit Montagne	P064
EXPERIMENTAL VALIDATION OF A COMPOSITE BEAM SUB-STRUCTURAL TEST SPECIMEN	Alex Quinlan	P065
NOVEL FILLER MATERIALS FOR SKIN-STIFFENER STRUCTURES	Zsombor Sápi	P066
MICRO-MECHANICAL FAILURE ANALYSIS OF A UNI-DIRECTIONAL COMPOSITE PLY - COHSEIVE ELEMENTS & A DUCTILE FRACTURE APPROACH	Akash Sharma	P067
EFFECT OF LAYING METHOD ON MECHANICAL PROPERTIES OF CONTINUOUS GLASS FIBER REINFORCED POLYPROPYLENE SANDWICH PANELS	Yiliang Sun	P068
KINKING MECHANICS IN COMPOSITES UNDER COMBINED LOADING	Sachin Vankar	P069
EFFECT OF INTERFACE LAYER AND DISLOCATION ON TANDEM HONEYCOMB MECHANICAL PROPERTY	Hangjian Weng	P070
INVESTIGATION INTO 3D PRINTING OF CFRP USING COVERING COMPOSITE YARN	Takato Yoshizawa	P071
QUASI STATIC COMPRESSIVE RESPONSE OF CFRP HONEYCOMB CORE WITH FOAM FILLERS	Hao Zhou	P072
Computational and finite element methods		
POTENTIAL APPLICATION OF WIRE WOVEN MESH AS PACKING TOWER BED LIMITER-COMPUTATIONAL APPROACH	Vahid Ebrahiminejad	P073
FINITE ELEMENT ANALYSIS AND EXPERIMENTAL TESTING OF NON-CRIMP FABRIC COMPACT TENSION SPECIMENS – INFLUENCE OF COHESIVE PROPERTIES.	Dimitris Gouskos	P074
MICROMECHANICS MODELING OF TENSILE/SHEAR BEHAVIOR AND CRACK DENSITY OF COMPOSITE MATERIALS	Daichi Haruyama	P075
APPLICATION OF A VARIABLE-KINEMATICS CONTINUUM SHELL ELEMENT TO THE ADAPTIVE NONLINEAR ANALYSIS OF COMPLEX SHELL STRUCTURES	Aewis K.W. Hii	P076
MECHANICAL BEHAVIOR OF TEXTILE COMPOSITES USING A TWO-STEP HOMOGENIZATION TECHNIQUE	Chaeyoung Hong	P077
BUCKLING ANALYSIS OF MULTILAYERED BEAMS WITH SOFT AND RIGID INTERFACES	An Le	P078
CARBON FIBRE PROSTHETIC FOOT: DESIGN AND MANUFACTURING PROCESS	Chao Liu	P079
MATERIAL DESIGN SIMULATION FOR FIBER REINFORCED CEMENT-BASED COMPOSITES USING MESO-SCALE ANLYSIS	Hiroki Ogura	P080
DYNAMIC STRESS-STRAIN RELATION OF ALUMINUM POWDERS USING MULTI-PARTICLE FINITE ELEMENT METHOD	Kefeng Peng	P081
DESIGN OF 70MPA COMPOSITE HYDROGEN STORAGE VESSEL	Cheng Shuo	P082
TOWARDS UNDERSTANDING AND MODELING IRREVERSIBLE BEHAVIOR OF WOVEN FABRICS UNDER LOADING-UNLOADING BENDING REGIMES	Reza Sourki	P083
SIZE-EFFECT DETERMINATION OF THE MODE I INTRALAMINAR FRACTURE TOUGHNESS USING COMPUTATIONAL MICROMECHANICS	Luis Varandas	P084
A MICROMECHANICAL MODEL IN CYCLIC PLASTICITY FOR FIBER REINFORCED WAVY COMPOSITES	Danhui Yang	P085

Poster title	Presenter name	Post
Fracture and damage		
A PRELIMINARY ASSESSMENT OF A NEW XFEM FRAMEWORK FOR PREDICTING COMPLEX FRACTURE	Keith Ballard	P
COMPARATIVE DAMAGE ANALYSIS OF VARIOUS OPEN CROSS-SECTION GLARE COMPOSITE COLUMNS	Dominik Banat	P
EFFECT OF PLY THICKNESS AND TEMPERATURE ON TRANSVERSE CRACKING PROCESS IN COMPOSITE LAMINATES	Tanguy Briand	P
SIZE EFFECT AND INTRALAMINAR FRACTURE TOUGHNESS OF FIBRE REINFORCED COMPOSITES	Giuseppe Catalanotti	P
EFFECT OF CARBON NANOTUBE CONTENTS ON FRACTURE PROPERTIES OF THERMALLY DEGRADED NANOCOMPOSITE FILMS VIA THE ESSENTIAL WORK OF FRACTURE TEST	Min-Seok Choi	P
FRACTURE MECHANISM AND STRENGTH PREDICTION OF IN-SITU TIB2/AL COMPOSITE	Min'ge Duan	P
DIC DEFORMATION MEASUREMENT IN CRACKED CFRP CROSS-PLY LAMINATES	M.j. Mohammad Fikry	P
RACTURE CHARACTERISTICS OF PARTICULATE REINFORCED COMPOSITES USING DIGITAL IMAGE CORRLELATION	Sangdeok Kim	P
DAMAGE PROGRESSION OF NOTCHED AND UNNOTCHED COMPOSITE LAMINATES UNDER PICTURE-FRAME SHEAR LOADING	Daniel Rapking	P
DUCTILE-BRITTLE FRACTURE SIMULATION OF IN-SITU TIB2/AL COMPOSITE	Ma Yifan	P
DEVELOPMENT OF PROGRESSIVE FAILURE ANALYSIS METHOD FOR COMPOSITE LAMINATES CONTAINING OPENINGS WITH DIGITAL IMAGE CORRELATION	Donghyun Yoon	Р
EVOLUTION OF FRACTURE PARAMETERS OF A CRACK IN A MICROPOLAR ELASTIC SOLID	Hongjun Yu	Р
NTERLAMINAR PROPERTIES OF CONTINUOUS FIBER REINFORCED THERMOPLASTIC COMPOSITES WITH DIFFERENT RESIN FRACTION	Tao Zhang	Р
MICRO-CRACK STUDY OF MULTICRYSTALLINE SILICON SOLAR PANEL BASED ON IN-SITU EXPERIMENT	Yangbo Zhang	Р
Green & natural fibe composites		
LABORATION AND MECHANICAL CHARACTERISTICS OF FLAX-PCL COMPOSITES AND SANDWICHES	Laurent Bizet	Р
IATURAL FIBRE BASED HYBRID POLYPROPYLENE COMPOSITES: AN INSIGHT INTO THERMAL PROPERTIES	Rupam Gogoi	P
THE EFFECT OF CORE-SHELL NANOPARTICLES ON STRENGTHENING AND TOUGHENING OF POLYLACTIDE AND JUTE FIBER REINFORCED OLYLACTIDE COMPOSITE	Hailing He	P
HERMAL AND MECHANICAL BEHAVIOUR OF FLAX YARNS MODIFIED WITH GRAPHENE OXIDE	Farzin Javanshour	F
WASTE-DERIVED NANOCELLULOSE-CHITIN HYBRID MATERIALS WITH TUNABLE PHYSICAL PROPERTIES	Sabu John	Р
HE FABRICATION OF POLYLACTIC ACID (PLA) / CELLULOSE NANOFIBER (CNF) NANOCOMPOSITES WITH PLASTICIZER AS DISPERSING IGENT	Bich Nam Jung	F
STREEN AND NATURAL FIBRE PANEL COMPOSITES FROM BAMBOO-A MATERIAL OF THE FUTURE	Uday Nagammanavar	F
EVALUATION OF TENSILE PROPERTIES AND WATER ABSORPTION OF ABACA FIBER THERMOPLASTIC COMPOSITE RELATIVE TO FIBER ENGTH, TYPE OF MATRIX AND ADDITIVES	Marissa Paglicawan	F
ONE-STEP EXTRACTION OF CELLULOSE NANOCRYSTALS ONLY USING HIGH-PRESSURE HOMOGENIZER	Nae-man Park	F
RESEARCH ON COMBUSTION BEHAVIOR OF HYBRID COMPOSITE BY FIRE DYNAMICS SIMULATOR	Yoon Hee Park	F
TUBE MADE FROM POLYLACTIC ACID YARN AND SILK YARN BY FILAMENT WINDING TECHNIQUE	Natee Srisawat	F
Hybrid composites		
ON THE COMPRESSION RESPONSE OF HYBRID 3D ORTHOGONAL WOVEN COMPOSITES	Sohail Ahmed	F
NVESTIGATION OF LOW-VELOCITY IMPACT AND CAI BEHAVIOR OF HYBRID SANDWICH COMPOSITES	Alex Osei Bonsu	P
ROBUST AND CONDUCTIVE HYDROGEL BASED ON CARBON NANOTUBE/ARAMID NANOFIBER FOR STRUCTURAL ENERGY STORAGE	Wenxin Cao	F
FFECT OF FIBER DISTRIBUTION ON COMBINED COMPRESSION-TORSIONAL RESPONSE OF HYBRID COMPOSITES	Sneha Bhushan Cheryala	F
NVESTIGATION OF DAMAGE ACCUMULATION IN GLASS/CARBON FIBER HYBRID COMPOSITES THROUGH ACOUSTIC EMISSION METHOD	Isa Emami Tabrizi	P
PROPERTIES AND FAILURE PREDICTION OF INTERPLY HYBRID COMPOSITES OF GLASS AND SELFREINFORCED POLYPROPYLENE	Farzaneh Hassani	F
MPACT OF CELLULOSE FILAMENTS ON INTERLAMINAR PROPERTIES, FLAMMABILITY AND THERMAL DEGRADATION BEHAVIOUR OF POLYMER MATRIX COMPOSITES	Félix Lessard	F
HYBRID NANOCOMPOSITE OF ZIF-67 AND COBALT-NICKEL LAYERED DOUBLE HYDROXIDE AS ELECTROCATALYST FOR HIGHLY EFFICIENT DXYGEN EVOLUTION REACTION	Feng Li	F
SAMMA-RAY SHIELDING PROPERTY OF TUNGSTEN/BASALT FIBER REINFORCED EPOXY MATRIX COMPOSITES FABRICATED BY TWO TUNGSTEN HYBRID WAYS	Ran Li	F
FFECT OF ARAMID FIBER CLOTH ON CARBON/ARAMID FIBER REINFORCED THERMOPLASTICS	Hisaki Matsuda	F
HOW THE SPRAYING OF GRAPHENE NANOPLATELETS CHANGES MECHANICAL PROPERTIES OF CARBON FIBRE REINFORCED POLYMER?	Marzena Pawlik	Р
CFRP-STEEL HYBRIDS WITH IMPROVED AGEING RESISTANCE THROUGH ZINC OXIDE NANORODS - INVESTIGATION OF BASIC MECHANISMS	Jan Striewe	Р
HYRID MULTIFUNCTIONAL POLYMER NANOCOMPOSITES USING GRAPHENE-MOF.	Vishnu Unnikrishnan	F
TEMPERATURE SENSOR BASED ON PHASE TRANSITION FOR ALARM SYSTEM	Yuyan Yu	Р
nterdisciplinary Forum on Multifunctional Composites for Sensing, Actuation, Computation and Structural Power		
LECTROMECHANICAL RESPONSE OF MULTIFUNCTIONAL PIEZOELECTRIC COMPOSITES	Krishna Challagulla	Р
COMPRESSION PROPERTIES OF MULTIFUNCTIONAL CFRP LAMINATES WITH EMBEDDED LITHIUM-ION POLYMER BATTERIES	Pooneh H.M Attar	Р
MULTIFUNCTIONAL STRUCTURAL ENERGY STORAGE COMPOSITES	Feng Huang	Р
PREPARATION OF THE PVDF/PAR COMPOSITE MATERIALS BY HIGH SHEAR RATE PROCESSING	Seung Goo Lee	F
PROGRESS IN STRUCTURAL TAILORED POLYMER INSERTS; TRENDS AND STRATEGIES TOWARDS FUNCTIONAL POLYMERIC INTER-PLY REINFORCEMENTS	Sithila Theminimulla	F
Hybrid composites		
BASALT FIBER REINFORCED HYBRID EPOXY COMPOSITES	Ramdayal Yadav	Р
DASALI FIDEN NEINFUNGED NIDNID EFUNI GUINFUSI IES		

99

POSTER PROGRAM

WEDNESDAY 14 AUGUST POSTER SESSION		
Poster title	Presenter name	Poster n
Computational and finite element methods	01.11 82 144	2001
A SEMI-ANALYTICAL FINITE ELEMENT METHOD FOR THE ANALYSIS OF FUNCTIONALLY GRADED CIRCULAR PLATES Interfaces and interphases	Chih-Ping Wu	P001
CHARACTERISATION OF BOND STRENGTH IN OVERMOULDED HIGH-PERFORMANCE THERMOPLASTIC COMPOSITES	Robert Gaitzsch	P002
THERMORHEOLOGICAL CHARACTERIZATION OF INTERFACIAL BONDING ENHANCEMENT OF BASALT FIBER REINFORCED EPOXY COMPOSITES	Doojin Lee	P003
TUNABLE MICROWAVE DIELECTRIC RESPONSE IN CARBON NANOCOMPOSITES VIA VERTICAL INTERPHASE	Faxiang Qin	P004
MODIFICATION OF CARBON FIBRE SURFACES BY SUFEX CLICK CHEMISTRY	James Randall	P005
DIRECTIONAL LAMINATES USING CARBON NANOTUBE INTERFACES	Lulu Shen	P006
TAILORING INTERFACIAL INTERACTIONS IN FIBER REINFORCED POLYMERIC COMPOSITES BY THE ELECTROSPRAY DEPOSITION OF WATERBORNE CARBON NANOTUBES	Murat Tansan	P007
INVESTIGATING WATER AGEING EFFECTS ON THE INTERFACIAL INTEGRITY OF CARBON FIBRE POLYMER COMPOSITES	Filip Vuković	P008
MUSSEL INSPIRED SURFACE MODIFICATION AND FUNCTIONALIZATION METHOD WITH HIGHLY EFFICIENT AND ENVIRONMENTAL FRIENDLY	Wencai Wang	P009
GRAFTING CARBON NANOTUBES ON CARBON FIBER SURFACE AND ENHANCING THE INTERFACIAL PROPERTIES OF COMPOSITES	Shu Xiong	P010
MOLECULAR SIMULATIONS OF INTERPHASE FORMATION PROCESS OF CARBON FIBER REINFORCED POLYMER COMPOSITES	Yingdan Zhu	P011
Joints		2010
INVESTIGATION OF GEOMETRICAL AND COMPOSITE MATERIAL PARAMETERS FOR TENSION-ABSORBING BOLTED JOINTS	Jazib Hassan	P012
AUXILIARY JOINING ELEMENT WITH INTEGRATED PIN STRUCTURES FOR MECHANICAL JOINING OF FIBER-REINFORCED PLASTIC/METAL COMBINATIONS	Per Heyser	P013
MECHANICAL ANALYSIS FOR WELDING TECHNOLOGY OF THERMOSET FRP	Masato Honma	P014
A STUDY ON THE FATIGUE CHARACTERISTICS OF SINGLE LAP JOINT BETWEEN CARBON FIBER REINFORCED PLASTIC/CARBON STEEL	Byunghyun Kang	P015
TENSILE PROPERTIES OF STITCHED 3D-WOVEN-COMPOSITES/TITANIUM SINGLE-LAP JOINT	Yi-rong Lu	P016
AXIAL TENSILE ADHESIVELY BONDED PERFORMANCE OF CFRP WOUND COMPOSITE TUBES UNDER ROOM-TEMPERATURE AND LOW- TEMPERATURE CIRCULATION	Haibo Luo	P017
EVALUATION METHOD OF JOINING STRENGTH OF CFRTP MANUFCTUED BY HYBRID INJECTION MOLDING PROCESS	Fumiya Matsumoto	P018
NUMERICAL MODELING OF ADHESIVELY BONDED CFRP JOINTS CONSIDERING NON-LINEAR DEFORMATION OF ADHESIVE LAYERS	Shunta Mimura	P019
THE EFFECTS OF ENVIRONMENTAL CONDITIONS ON THE STRENGTH OF DOUBLE LAP JOINTS	Aakash Paul	P020
A STUDY ON THE CHANGE OF ADHESIVE SHEAR STRENGTH OF CARBON STEEL/CARBON FIBER REINFORCED PLASTIC COMPOSITE BY SURFACE TREATMENT OF CARBON STEEL	Seung Hak Song	P021
DAMAGE IN HYBRID JOINTED GLARE STRUCTURES UNDER THE QUASI-STATIC	Peifei Xu	P022
MECHANICAL PROPERTIES OF CFRP SINGLE LAP ADHESIVE JOINT	Kotono Yanagisawa	P023
SILICA DEPOSITION TREATMENT FOR IMPROVING ADHESION PROPERTIES OF ADHESIVE BONDING OR COATING OF AIRCRAFTS Liquid composites moulding	Tetsuo Yasuoka	P024
A TWO PHASES COUPLING FREE AND POROUS FLOW METHOD AT MULTI-SCALES OF LCM PROCESS	Arthur Cantarel	P025
NUMERICAL SIMULATION OF RESIN FLOW THROUGH 3D FIBROUS REINFORCEMENT AT MULTISCALE	Chaozhong Chen	P026
PERMEABILITY EVALUATION IN VACUUM-ASSISTED RESIN TRANSFER MOLDING OF CARBON FIBER REINFORCED PLASTICS	Fumiya Isono	P027
LINKAGE ANALYSIS OF PERMEABILITY AND MECHANICAL EXPERIMENTS FOR CFRP	Seonghun Kwak	P028
EFFECT OF WETTABILITY ON IMPREGNATION PROCESS OF VISCOUS FLUID TO WOVEN FIBER BUNDLES	Atsuki Mizuno	P029
A PARAMETRIC FLOW VISUALISATION STUDY OF THE WET COMPRESSION MOULDING PROCESS	Balaji Muthuvel	P030
EFFECT OF FLAME RETARDANT FILTRATION ON THE FIRE PERFORMANCE OF CARBON FIBRE REINFORCED EPOXY COMPOSITES MADE BY RESIN TRANSFER MOULDING	Ákos Pomázi	P031
EVALUATION OF MECHANICAL PROPERTIES FOR CFRTP USING IN SITU-POLYMERIZING THERMOPLASTIC URETHANE RESIN	Tsuyoshi Sugita	P032
Machining of composites		
EPI-FLUORESCENT MICROSCOPY OF EDGE TRIMMED CARBON FIBRE REINFORCED POLYMER: AN ALTERNATIVE TO CT-SCANNING	Sam Ashworth	P033
STUDY ON THE PROCESS AND PROPERTIES OF CARBON NANOTUBE FILM CURING CARBON FIBER COMPOSITES	Zhiwei Liu	P034
MACHINED SURFACE TOPOGRAPHY ANALYSIS IN ULTRASONIC VIBRATION ASSISTED END GRINDING OF SICP/AL COMPOSITES	Wei Zheng	P035
Meta-composite INDENTATION RESPONSE OF TOPOLOGICAL LATTICE	Xiao-fei Guo	P036
Metal matrix composites	Aldo-lei ddo	1 030
THE MAGNETIC AND ELECTROMAGNETIC PROPERTIES OF FECONISIXAL0.4 HIGH ENTROPY ALLOY POWDERS	Yuping Duan	P037
ENHANCING THE MECHANICAL PROPERTIES OF TIB2 REINFORCED MAGNESIUM COMPOSITES USING STIR CASTING METHOD	Anbuchezhiyan Gnanasambandam	P038
OPTIMIZING THE MICROSTRUCTURE AND MECHANICAL BEHAVIORS OF IN-SITU TIC- '/NI COMPOSITES BY SUBSEQUENT THERMAL TREATMENT	Wenqiang Hu	P039
WEAR AND MECHANICAL CHARACTERISTICS OF AL-SI/TIB2 COMPOSITES	Jimmy Karloopia	P040
EFFECT OF TA ADDITION ON MICROSTRUCTURES AND ROOM TEMPERATURE FRACTURE TOUGHNESS OF THE NB-16SI-20TI-5AL ULTRAHIGH TEMPERATURE ALLOY	Wenyuan Long	P041
SIMULATION OF THERMAL CONDUCTIVITY FOR TITANIUM BORIDE PARTICLE DISPERSED ALUMINUM COMPOSITES	Gen Sasaki	P042
EVALUATION OF INTERFACIAL THERMAL RESISTANCE OF AL-ALN PARTICLE DISPERSED COMPOSITES BY USING IMAGE-BASED	Kenjiro Sugio	P043
CALCULATION PREPARATION OF SIGNE AND INJUSTILIANCES HYBRID PARTICLIFATES BEINFORCED ALLCH MATRIX COMPOSITES	Shusen Wu	P044
PREPARATION OF SICNP AND IN-SITU MG2SI HYBRID PARTICULATES REINFORCED AL-CU MATRIX COMPOSITES A NOVEL W/TIN/TA COMPOUND SHAPED CHARGE LINER	ZiZhi Yan	P044 P045
STRENGTHENING OF PURE AL MATRIX COMPOSITES BY IN-SITU SYNTHESIZED NANO AL-O NEEDLE PHASE	Xinxin Zhu	P045
Multiscale modelling		
FINITE STRAIN PARAMETRIC HEGMC PREDICTION OF THE MICROMECHANICAL BEHAVIOR OF COMPOSITE	Uri Breiman	P047
MULTISCALE FAILURE ANALYSIS OF 3D BRAIDED COMPOSITE STRUCTURE BY COUPLING FEM AND FFT METHOD DEVELOPMENT OF MULTISCALE DAMAGE PROPAGATION ANALYSIS METHOD FOR WOVEN LAMINATES USING A HOMOGENIZATION THEORY	Guodong Fang Gai Kubo	P048 P049
OVERALL ELASTOPLASTIC PROPERTY OF PARTICULATE COMPOSITE WITH STRAIN GRADIENT MATRIX	Hansong Ma	P050
IDENTIFICATION OF THE QUASI-STATIC BEHAVIOR OF A WOVEN COMPOSITE SENSITIVE TO THE ENVIRONMENTAL CONDITIONS USING	Patrick Rozycki	P050
NUMERICAL HOMOGENIZATION	,	

ACCUMUTANCE FOR CULTARED TEXTUE COMPONED IN THE COMPONED IN TH	Presenter name	Pos
ICCOUNTING FOR SHEARED TEXTILE COMPOSITE UNIT CELL PROPERTIES IN MACRO SCALE FE SIMULATIONS	Meng-yi Song	P
INALYSIS OF MICRO/MESO/MACRO TEMPERATURE-DEPENDENT ELASTOVISCOPLASTIC PROPERTIES OF WOVEN COMPOSITES	Junpei Tetsuka	P
ON THE EXPERIMENTAL VALIDATION OF THE WAVE PROPAGATION MODELLING FOR TWO-DIMENSIONAL PERIODIC TEXTILE COMPOSITES	Victor Thierry	P
MODELLING AN IMPROVED NOL RING TEST USING A REDUCED VOLUME METHOD FOR THE CHARACTERISATION OF COMPOSITE CYLINDERS	Martinus Putra Widjaja	P
lano-composites		
IIGH-EMISSIVITY NANO-COMPOSITE FILM FOR EUV PELLICLE APPLICATIONS IN SEMICONDUCTOR FABRICATION PROCESS	Jinho Ahn	P
VALUATING THE MICRON LEVEL PHASE DISTRIBUTION IN COMPOSITE STRUCTURES AND ITS EFFECT ON MECHANICAL BEHAVIOR USING D MODULUS MAPPING	Ankita Bisht	F
ONDUCTIVE NANOPARTICLE ENHANCEMENTS FOR STRUCTURAL DIELECTRIC CAPACITORS	KY Chan	F
ANO-ENABLED MANUFACTURING OF AEROSPACE-GRADE THERMOPLASTIC COMPOSITES	Frederick Daso	F
ULTIFUNCTIONAL COMPOSITES WITH MODIFIED CARBON FIBERS FOR LIGHTNING STRIKE PROTECTION	Anchalee Duongthipthewa	F
HOSPHATE FUNCTIONALIZED GRAPHENE OXIDE AS ADSORBENT FOR THE REMOVAL OF PB(II) FROM AQUEOUS SOLUTION	Daniel Gang	- 1
DW PERCOLATION THRESHOLD OF POLYPROPYLENE SPECIALLY DESIGNED GRAPHENE NANOCOMPOSITES	Karolina Gaska	- 1
ABRICATION AND HYDROPHILIC CHARACTERIZATION OF NANOPARTICLES-FILLED POLYMER COMPOSITES	Yuki Hanzawa	ı
FFECT OF CARBON NANOTUBES CONTENT ON THE FRACTURE BEHAVIOR OF PP/EPDM/MWCNT BLEND-NANOCOMPOSITES UNDER YNAMIC AND QUASI-STATIC LOADING	Mehrdad Khodabandelou	F
OBALT COPPER ALLOYS ENCAPSULATED BY MOS2/N-DOPED GRAPHENE NANO-HETEROSTRUCTURES FOR ORR APPLICATION	Nam Hoon Kim	F
OBALT PHOSPHIDES COATED COPPER OXIDE NANOROD ARRAYS FOR ENHANCED OVERALL WATER SPLITTING	Joong Hee Lee	- 1
LECTROMAGNETIC PROPERTIES OF KH560/RGO@FE3O4/TIO2/PARAFFIN WAX COMPOSITE IN 0.5-18 GHZ FREQUENCY	Yuexuan Li	-
NALYSES OF MECHANICAL REINFORCEMENT FOR CELLULOSE NANOFIBERS/CLAY NANOCOMPOSITES USING X-RAY DIFFRACTION	Shunichi Mori	
FECT OF GRAPHENE NANOPARTICLES AND THEIR FUNCTIONALISATION ON VITRIMER MATRIX	Quentin-Arthur Poutrel	- 1
REPARATION OF FLUOROALKYL END-CAPPED OLIGOMER/MAGNETITE NANOCOMPOSITES - APPLICATION TO WATER/OIL SEPARATION	Hideo Sawada	
SE OF RESOLE SEPIOLITE-PHOSPHATE NANOCOMPOSITE FOR BUILDING FACADES	Leila Soufeiani	
RAPHENE OXIDE/POLYMER-BASED NANOCOMPOSITE HYDROGEL FOR BIOMEDICAL APPLICATIONS WITH ANTIMICROBIAL PROPERTY	Lee Won Chang	
UMERICAL INVESTIGATION ON MECHANICAL PROPERTIES OF POLYMER COMPOSITES REINFORCED WITH MXENE NANOSHEETS	Daiva Zeleniakiene	
OLYIMIDE AEROGELS CROSS-LINKED WITH AMINATED AG NANOWIRES: MECHANICALLY STRONG AND TOUGH	Tianyi Zhang	
MPROVING INTERLAMINAR SHEAR STRENGTH OF FIBER REINFORCED EPOXY COMPOSITES LAMINATES BY CARBON NANO-FILLERS	Helezi Zhou	
ITERFACIAL PROPERTIES OF MXENE/GRAPHENE/POLYMER MATRIX NANOCOMPOSITES	Kristina Žukienė	_
on-destructive evaluation		
HERMOELASTIC ASSESSMENT OF COMPOSITE DELAMINATION BUCKLING	Cedric Antolis	
UTOMATED IMAGE ANALYSIS OF ULTRAFAST SYNCHROTRON CT SCANS TO EXPERIMENTALLY CHARACTERISE THE FIBRE BREAK EVELOPMENT DURING IN-SITU TENSILE TESTS	Christian Breite	
IMULTANEOUS MULTI-FREQUENCY DIELECTRIC ANALYSIS OF THE POLYMERIZATION PROCESS OF ANIONIC POLYAMIDE 6	Maximilian Eberhardt	_ !
ARLY PREDICTION OF CRACK DEVELOPMENT USING DIGITAL IMAGE CORRELATION	David Jesson	- 1
ABRICATION AND CHARACTERIZATION OF DISCONTINUITIES IN AIRCRAFT COMPOSITES AS REFERENCE FLAWS FOR GUIDED WAVE ASSED ULTRASONIC TESTING	Michael Koerdt	
AMAGE DETECTION IN HONEYCOMB SANDWICH PANELS BY ACTIVE THERMOGRAPHY	Sefa Kemal Mandal	- 1
IEASUREMENT OF MOISTURE DIFFUSION COEFFICIENT OF WOOD USING TERAHERTZ WAVE	Gyung-hwan Oh	- !
NVESTIGATION OF DELAMINATED COMPOSITES BY DIC AND AE METHODS	Hliva Viktor	F
OMPOSITE PROPERTY DETECTION USING "WEAK" FORMULATION BASED LOCAL SPECIFIC STIFFNESS IDENTIFICATION olymer matrix materials	Chao Zhang	
FFECT OF GRAPHENE AND MWCNTS AND ITS DOSAGE ON MODE LINTERLAMINER FRACTURE TOUGHNESS OF CFRP	Shuanghui Cao	-
AILORED POLYMER NETWORKS BY SEQUENTIAL THIOL-ENE PHOTOPOLYMERIZATION	Sergio Cespedes	
TRUCTURAL COMPOSITE BATTERIES FOR AUTOMOTIVE APPLICATIONS	Jaehoon Choi	-
REPARATION AND CHARACTERIZATION OF MODIFIED POLYVINYL ALCOHOL/SODIUM ALGINATE HYDROGEL	Jianle Gong	
HE EFFECTS OF MOISTURE AND TEMPERATURE ON THE FLEXURAL PROPERTIES OF CARBON FIBER PAPER REINFORCED HERMOPLASTICS/POLYAMIDE 6	Xiangdong He	ı
REPARATION AND CHARACTERIZATION OF POLY(1,4 BUTYLENE CARBONATE-CO-TEREPHTHALATE)/ORGANICALLY MODIFIED MGAL AYERED DOUBLE HYDROXIDE NANOCOMPOSITES	Ming-Chen Hsu	
REPARATION AND CHARACTERIZATION OF ALUMINUM OXIDE/ALUMINUM NITIDE AS FILLER OF THERMALLY CONDUCTIVE MATERIALS HE INFLUENCE OF DIFFERENT POWDER IMPREGNATION PROCESSES ON THE PROPERTIES OF L-SHAPED WOVEN FABRIC REINFORCED EEK COMPOSITES BY HOT STAMP FORMING	Gyungsoo Jeon Hansong Liu	
XPERIMENTAL EVALUATION ON FIBER ROTATION OF THERMOPLASTIC COMPOSITE LAMINATE UNDER TENSILE LOADING	Taoye Lu	
EFORMATION MECHANISM INVESTIGATION FOR EPOXY BY IN-SITU MECH-ELETRIC COUPLING MEASUREMENT	Yinggang Miao	i
OMPARISON OF SHORT CARBON AND POLY(P-PHENYLENE-2,6-BENZOBISOXAZOLE) FIBERS ON THE PROPERTIES OF POLYESTER HERMOPLASTIC ELASTOMERS	Adam Pearson	1
REPARATION AND MECHANICAL PROPERTIES OF METAL FLAKE PARTICLES/RESIN COMPOSITE	Yutaro Sako	
NEAR AND NONLINEAR ELASTIC PROPERTIES OF POLYSTYRENE-BASED NANOCOMPOSITES	Irina Semenova	
LECTRICAL, THERMAL AND MECHANICAL PROPERTIES OF THERMOPLASTIC ELASTOMER COMPOSITES CONTAINING CARBON FILLERS	Rajesh Theravalappil	
REPARATION AND CHARACTERIZATION OF ORGANICALLY MODIFIED LAYERED ZINC PHENYLPHOSPHONATE/POLY(1,4-BUTYLENE ARBONATE-CO-TEREPHTHALATE)S NANOCOMPOSITES	Li-ying Tseng	
GH TEMPERATURE COMPRESSION PROPERTIES OF CFF/PPS COMPOSITE LAMINATES FABRICATED BY FILM STACKING TECHNIQUE	Shixun Wang	
ESEARCH ON WAVES DEFECTS OF TAPE WINDING RESIN MATRIX COMPOSITES	Xiaojing Wang	
HARACTERIZATION AND GAS SENSING PROPERTIES OF GRAPHENE NANORIBBONS/ INDIUM TRIOXIDE / POLYANILINE	Ling-hui Xu	
HTHALONITRILE MODIFIED MULTI-HYDROXYL PHENOLIC; SYNTHESIS, CURING AND PROPERTIES HTHALONITRILE MODIFIED MULTI-HYDROXYL PHENOLIC; SYNTHESIS, CURING AND PROPERTIES	Shuangshuang Xu	
	Xuefeng Yao	
IACROSCOPIC AND MICROSCOPIC PROPERTIES OF FABRIC RUBBER COMPOSITE		

POSTER PROGRAM

REPUBLICATION DE TITLE GASTE VERNINCE CONCENSIONAL VIBRATIONS OF LOADED AND CRINCKED PUNCTIONALLY GRADED. PROVINCER MICHIGATI TO SIGNEY P. FLOW AGAIN YES CP CHOPPEY CONS PRINT THE MICHIGAN STATE COMPOSITY. TO SIGNEY P. FLOW AGAIN YES CP CHOPPEY CONS PRINT THE MICHIGAN STATE COMPOSITY. TO SIGNEY P. FLOW AGAIN YES CP CHOPPEY CONS PRINT THE MICHIGAN STATE COMPOSITY. TO SIGNEY P. FLOW AGAIN YES CP CHOPPEY CONS PRINT THE MICHIGAN STATE COMPOSITY. TO SIGNEY P. FLOW AGAIN YES CP CHOPPEY CONS PRINT THE MICHIGAN STATE COMPOSITY. TO SIGNEY P. FLOW AGAIN YES CP CHOPPEY CONS PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE COMPOSITION CONTROL CONTROL THE MICHIGAN STATE COMPOSITY. MICHIGAN STATE COMPOSITION CONTROL CONTROL CONTROL THE MICHIGAN STATE COMPOSITY. RECEIVED AND STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE COMPOSITY. THE MICHIGAN STATE CONTROL PRINT THE MICHIGAN STATE CONTROL STATE CONTROL PRINT THE MICHIGAN STATE CONTROL THE MICHIGAN STA	THURSDAY 15 AUGUST POSTER SESSION		
APPLICATIONS OF THE MLS-BITZ METHOD TO THESE OMERISONAL VISIATIONS OF LOADED AND CHARGES PLANTFORMALY ORACES FRICARE MARKETS AND AND YEAR OF CHARPED LONG PHIN THE PRINCIPAL ACTIC COMPOSITY FRICARE MARKETS AND AND AND YEAR OF CHARPED LONG PHIN THE PRINCIPAL ACTIC COMPOSITY FROM MARKETS AND AND AND YEAR OF CHARPED LONG PHIN THE PRINCIPAL ACTIC COMPOSITY FROM MARKETS CHARLES AND AND AND AND THE PRINCIPAL ACTIC COMPOSITY FROM MOSEL AND AND THE ADMINISTRATION CHARLES AND AND THE PRINCIPAL		Presenter name	Poster n
DISOUEDE FLOW MANUES OF HIGHER UND FIREMAN THERMORASTIC COMPOSITE MODELING STRINGS OF BLANDS WITH ITERRATIC SPREAD FLOW SIGN THE MANUEACH LISTED AT THE MANUEAC	APPLICATIONS OF THE MLS-RITZ METHOD TO THREE-DIMENSIONAL VIBRATIONS OF LOADED AND CRACKED FUNCTIONALLY GRADED	Chiung-Shiann Huang	P001
MODELINES STRAFFER OF IRLANDS WITH INTERNATES REFLECTOR LISED IN NEW AMUNICATIONS PROCESS OF THERMOPIA STITE. COMPOSITION OF COMMON DEPOCRATION FOR COMPOSITION OF CREEK VOLUME PRACTICAL MANUALS. MACHINE PROVIDED EXPERIENCE GRANDER STREET ON THE CLIBER ROUGED DISTORTION OF CREEK VOLUME PRACTICAL AND MATERIAL PROVIDED STREET ON THE CLIBER ROUGED DISTORTION OF CREEK VOLUME PRACTICAL AND MATERIAL PROVIDED STREET ON THE CLIBER ROUGED DISTORTION AND PRIMARRIESTY. PROVIDED AND MATERIAL PROVIDED STREET ON THE CLIBER ROUGED DISTORTION OF CREEK VOLUME PRACTICAL AND MATERIAL PROVIDED STREET ON THE CLIBER AND MATERIAL PROVIDED STREET ON AND CREEK VOLUME PRACTICAL AND PRIMARRIESTY. PROVIDED AND MATERIAL PROVIDED STREET ON THE CLIBER AND CREEK VOLUME PRACTICAL AND PRIMARRIESTY. PROVIDED AND MATERIAL PROVIDED STREET ON THE CLIBER AND CREEK VOLUME PRACTICAL	Process modelling		
COMPOSITE FIRES MACHINE GRIPTS EXPERIMENTATION FOR SOLVING CHALLENGING CONSOLIDATION PROBLEMS MODELING THE TEMPERATURE GRADEN'S EPECT ON THE CUITE-ADUCCED DISTOTION OF CEPTE-SAMPE LAMINATES MAJOR ACMACATERIZATION STUDY RELATING COSS SECTIONAL DISTOTION OF CEPTE-SAMPE LAMINATES MAJOR ACMACATERIZATION OF EACH OF PRISHES COMPOUNDS IN MERTALLY FLEE INTERNAL MICE IN THE COMPOSITION OF THE CO	1D SQUEEZE FLOW ANALYSIS OF CHOPPED LONG FIBER THERMOPLASTIC COMPOSITE	Waqas Ali	P002
MODITURE THE PREPARATURE GRADIENT EFFECT ON THE CLIEB MODICED DETORTION OF CERPE LANGED AUMENTES. NAME PROCESS SECTIONAL DETORTS SECTIONAL DETORTS OF THE PROCESS SECTION AS CONTROLLED INTERNAL MODEL OF THE PROCESS SECTION OF		Olivier De Almeida	P003
ACCHARGE TERRATION STUTY ARE ATTHS CROSS SECTIONAL DISTRIBUTION OF FRIEND REACTION AND PERMANATION OF FRIEND REAGHS AND MAND PROVIDED SECTION STATES AND PROVIDED SECTION SECT		, ,	P004
NAMERICAL SIMULATION OF ELYON OF RUBBER COMPOUNDS IN PARTIAL Y PILED INTERNAL MINER NEVELVER OF NOVEL TYPES OF CLEFT NAMER-CAMPITORIES COPIOLAME BASED ADDITIVES IN BILENDS OF PA AND RECYCLED PT DEVELOPMENT OF HOTH PERFORMANCE CALINOS DISCONTINUOUS PIRES COMPOSITES FIRED SUPPLICATIONS SIMPLE STATES OF AREADS OF CARRY SCARRY STATES AND THE PROPERTY OF THE PROPERT		,	
RECURSION OF CHEMPORATE OF CLETH MALICIA MYDRIDE COPOLYMER BASED ADDITIVES IN BLENDS OF PA AND RECURSION TO THIS PREPROFUNANCE ALLINED DESCONTINUOUS RIBBS COMPOSITES. FIBRE SUBFACE MODIFICATION CHEMPORATE OF HIGH PERPORMANCE ALLINED DESCONTINUOUS RIBBS COMPOSITES. FIBRE SUBFACE MODIFICATION CHEMPORATE OF HIGH PERPORMANCE ALLINED DESCONTINUOUS RIBBS COMPOSITES. FIBRE SUBFACE MODIFICATION CHEMPORATE OF THE PERPORMANCE ALLINED DESCONTINUOUS RIBBS COMPOSITES. FIBRE SUBFACE MODIFICATION CHEMPORATE OF THE PERPORMANCE AND PROPERTIES. IN HOPE OF BLENDS BY EXPERIMENTAL COMPATIBILIZERS CHEMPORATE OF THE PERPORMANCE AND PROPERTIES. IN HOPE OF BLENDS BY EXPERIMENTAL COMPATIBILIZERS CHEMPORATION. CHEMPORATION OF CHEMPORATION OF A BRANKED CHEMPORATE AND GRAPHITES FIBRE SUBFACE MODIFICATION. THE PERPORMANCE AND COMPOSITE COMPOSITES AND GRAPHITES FIBRE SUBFACE AND TURBUSE. FERENCE OF CAPPO ON MOTERNAMICAL PROPERTIES. THE CHEMPORATE HIGH PROPERTIES. FERENCE OF CAPPO ON MOTERNAMICAL PROPERTIES. THE CHEMPORATE HIGH PROPERTIES. FRANCE ALLINES SHOW AND FOULD AND PROPERTIES. CHEMPORATE HIGH PROPERTIES. FRANCE ALLINES SHOW AND FOULD AND PROPERTIES. CHEMPORATE HIGH PROPERTIES. FRANCE MATERIAL REMOVAL TOOLS AND PROCESSES TO SAFELY EXPEDITE MAINTENANCE ON COMPOSITES. FRANCE MATERIAL REMOVAL TOOLS AND PROCESSES TO SAFELY EXPEDITE MAINTENANCE ON COMPOSITES. FOUND AND PROPERTIES. FRANCE MATERIAL REMOVAL TOOLS AND PROCESSES TO SAFELY EXPEDITE MAINTENANCE ON COMPOSITES. FOUND AND PROPERTIES. FRANCE MATERIAL REMOVAL TOOLS AND PROPERTIES. ALDER EPONESS AND THEIR RESPONSITION COMPOSITES. FOUND AND PROPERTIES. FRANCE MATERIAL REMOVAL TOOLS AND PROPERTIES. FRANCE MATERIAL REMOVAL AND PROPERTIES. FRANCE			
INCLUENCE OF NOVEL TYPES OF CHEMNAL THE ANY PROPER COPICIAL METIRAL STATES AND THE STATES AND RELATED OF PA AND RECYCLED PT DEVELOPMENT OF A SEROSANCE CARRON SCRAP. IMMARIO OF MATERIAL, PROPERTIES SORPHONE AND STATES AND ANY PROPERTIES NUMBER OF A SEROSANCE CARRON SCRAP. IMMARIO OF MATERIAL, PROPERTIES UNIVELY IN RECYCLULA OF WASTE ELAST ONE STATES. THE PERIOD STATES AND THE STATES. THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES. THE STATES AND THE STATES AND THE STATES AND THE STATES. THE STATES AND THE STATES. THE STATES AND THE STATES A		Haibo Yang	P007
DEVELOPMENT OF HIGH PETROPNANCE ALENNED DESCONT INVOIDES PRIESE COMPOSITES FIBRE SURFACE MODIFICATION (1) the Surpaina Properties of Composition Properties (1) the Surpaina Properties of Composition Properties (1) the Surpaina Properties		Rianka Nagy	Pnns
UNCYCLING OF AREDISSANCE CARBON SCIANE IMARTO OF MATERIAL PROPERTIES VIOLITOR IS REVISION OF CWASTE IS ASTOMESIS IN LOPE PPR IL NOS BY EXPERIMENTAL COMPANIE (1985) BOCIVILAR A ROTHSTIML COMPOSTE CONSTITUENT MEXIFERED TO STATEMAN COMPOSTE COMPOSTES MEXIFERED TO STATEMAN COMPOSTES MEXIFERED TO			
ROWARD NEEDED NO CONTRIBUTION OF WASTE BLASTOMERS IN LOPE/PP BLENDS BY EXPERIMENTAL COMPATIBILIZERS BICHARD A FOTTENTIAL COMPOSITE CONSTITUENT DOBE PROPERTION OF COMPOSITE CONSTITUENT DOBE PROPERTION OF COMPOSITE CONSTITUENT PROPERTION OF CONTRIBUTION OF A PRINCIPAL PROPERTION OF A PRINCIPAL PROPERTION OF A PRINCIPAL PROPERTION OF A PRINCIPAL PROPERTY OF CORP ON CORTEX-ADJOCITY WIRD AND A PRINCIPAL PROPERTY OF A PRINCIPAL PROPERTY OF CORP ON CORTEX-ADJOCITY WIRD AND A PRINCIPAL PROPERTY OF CORP ON CORTEX-ADJOCITY OF A PRINCIPAL PROPERTY OF CORP ON CORP ON CORP OF A PRINCIPAL PROPERTY OF A PRINC		-	
BIOCHARA POTENTIAL COMPOSITE CONSTITUENT MEET LESCHTGORDHINGS AND CONFERENDU WAY OF ANADORESH AND GRAPHITZED PIBRE PREPARATIONS USING MANOCELLULOSE FEET OF C FORP ON VORTEX-INDUCED VIBRATION OF A BRIMMED-DIFFLISER SHROUD FOR A WIND TURBINE FREIL THIS SINGLE MOLECULA STUDY OF A PRETENATE CELLULOSE PHOROLYSIS MODE AND INDUFFLIAM MOVEMENT VENEZIONE FAILURE SINGLE MOLECULA STUDY OF A PRETENATED CELLULOSE PHOROLYSIS MODE AND INDUFFLIAM MOVEMENT FAILURE AND RELIABILITY ANALYSIS OF IN SERVICE REPAIRED COMPOSITES FAILURE MATERIAL REMOVAL TOO.'S AND PROCESSES TO SARELY EXPEDITE MAINTENANCE ON COMPOSITES STRUCTURES MEND COMPOSITE REPAIRS UNDER DRIVICOLD AND INDIFFUNTY ENVIRONMENTAL CONDITIONS FOR INDURED COMPOSITE REPAIRS UNDER DRIVICOLD AND INDIFFUNTY ENVIRONMENTAL CONDITIONS FOR INDURED COMPOSITE REPAIRS UNDER DRIVICOLD AND INDIFFUNTY ENVIRONMENTAL CONDITIONS THE PREPAIRATION, PROCESSING AND HEALING OF DIELS-ALDER PROXES AND THEIR PIBER-RENFORCED POLYMER COMPOSITES THE WORLD FOR STRUCTURES CHARACTERIZATION AND POLYMER PROVIDED AND THE PIBER-RENFORCED POLYMER COMPOSITES CALLING BERNARD AND ADMINISTRATION OF PHYERBRANCHED DEDUZIONAZINE RESINS DERIVED FROM A2+ SOLUTION OF THE PROVIDE STRUCTURE STRUCTURES COMPOSITES SOLUTION OF THE PROVIDER OF THE PROVIDE AND THE PIBER-RENFORCED POLYMER COMPOSITES SOLUTION OF THE PROVIDER OF THE PROVIDER OF THE PIBER		,	
RELT ELECTIONSPINANCE, AN ECC-PRENDICY WAY OF NANOFIBER AND GRAPHITIZED RIBER PREPARTATIONS USING NANOCELLULOSE 1809-009-009-009-009-009-009-009-009-009-			
EFFECT OF CRIP ON VORTEX-INDUCED VIBRATION OF A BRIMMED-DIFFUSER SHOULD FOR A WIND TURBURE FOLL TIME SINGLE MICLEGULAR STUDY OF A PRETREATED CELLULOSE PHYROLYSIS MODE AND INDUVIDUAL ENZYME MOVEMENT FAILURE RIND RELIABILITY ANALYSIS OF IN SERVICE REPAIRED COMPOSITES FAILURE RIND RELIABILITY ANALYSIS OF IN SERVICE REPAIRED COMPOSITES FAILURE RIND RELIABILITY ANALYSIS OF IN SERVICE REPAIRED COMPOSITES FAILURE RIND RELIABILITY ANALYSIS OF IN SERVICE REPAIRED COMPOSITES FOR WASTERIAL REMOVAL TOOLS AND PROCESSES TO SAFELY EXPEDITE MINITERANCE ON COMPOSITE STRUCTURES JAMES MARKED RIND RELIABILITY ANALYSIS OF IN SERVICE REPAIRED COMPOSITES FOR SIND RELIABILITY ANALYSIS OF IN SERVICE REPAIRED COMPOSITES FOR SIND REPAIR STRUCTURES OF A SAFELY EXPEDITE MINITERANCE ON COMPOSITES STRUCTURES AND PROVIDED RELIABILITY ANALYSIS OF IN SERVICE REPAIRED COMPOSITES THE PRIERRAATION, PROCESSIS AND HEALING OF DIELS-ALDER PROVISES AND THEIR FIBRE-REINFORCED POLYMER COMPOSITES THE ONE PROTESTY PRIESS, CHARACTERIZATION AND POLYMERIZATION OF PYPERBRANCHED BENZOXAZINE RESINS DERIVED FIRM A 2+ Wasnes Call BIS MONOMERS MELAMINE-MELTELOWN NONNOVEN A HIGH-PERFORMANCE MATERIAL COMBINING FOR THE RIRST TIME THERMOSET MELAMINE WITH BIS MONOMERS MELAMINE-MELTELOWN NONNOVEN A HIGH-PERFORMANCE MATERIAL COMBINING FOR THE RIRST TIME THERMOSET MELAMINE WITH BIS MONOMERS ANTE-ALSTICATION OF ARYL ETHER EPODIES ANTE-ALSTICATION OF ARYL ETHER EPODIES LIARY PROVIDED AND ALDER AND ALDER AND ALDER PROVIDED AND ALDER AND	BIOCHAR: A POTENTIAL COMPOSITE CONSTITUENT	Oisik Das	P012
REALTHE SINGLE MOLECULAR STUDY OF A PRETREATED CELLULOSE HYDROLYSIS MODE AND INDIVIDUAL ENZYME MOVEMENT PRILIPE AND RELABILITY ANALYSIS OF IN SERVICE REPAIRED COMPOSITES PAILURE AND RELABILITY ANALYSIS OF IN SERVICE REPAIRED COMPOSITES PAILURE AND RELABILITY ANALYSIS OF IN SERVICE REPAIRED COMPOSITES PAILURE AND RELABILITY ANALYSIS OF IN SERVICE REPAIRED COMPOSITES RIVE MARTINES REPAIRS NURSE OF PROVICED AND HOTWET ENVIRONMENTAL CONDITIONS PRISE BRONED COMPOSITE REPAIRS NURSE OF PROVICED AND HOTWET ENVIRONMENTAL CONDITIONS RESIDENCE COMPOSITE REPAIRS NURSE OF PROVICED AND HOTWET ENVIRONMENTAL CONDITIONS RESIDENCE COMPOSITE REPAIRS NURSE OF PROVICED AND HOTWET ENVIRONMENTAL CONDITIONS CALLUM BRANCH AS BOOK OF THE PREVIOUS AND HEALING OF DIELS ALDER PROVISES AND THEIR FIBRE-REINFORCED POLYMET COMPOSITES CALLUM BRANCH AS BOOK OF THE PRIVATE AND THE PRIVATE REPAIRS DERIVED FROM A2+ Worse Callum Branch A2+ PROVIDE BRANCH AND AND THE PRIVATE AND THE PRIVATE REPAIRS DERIVED FROM A2+ Worse Callum Branch A2+ REPAIR MARTINE ASSED ON BISONAZOLINES MIRE ANTHER MOSET MATRIX BASED ON BISONAZOLINES MIRE AND THE PRIVATE MATRIX BASED ON BISONAZOLINES MIRE AND THE MARTINES AND THE PRIVATE MATRIX BASED ON BISONAZOLINES LITY ROPE PROVIDED THE PRIVATE MATRIX BASED ON BISONAZOLINES LITY ROPE PROVIDED THE PRIVATE MATRIX BASED ON BISONAZOLINES LITY ROPE PROVIDED THE PRIVATE MATRIX BASED ON BISONAZOLINES MIRE AND THE MARTINES AND THE PRIVATE MATRIX BASED ON BISONAZOLINES MIRE AND THE MARTINES AND THE PRIVATE MATRIX BASED ON BISONAZOLINES LITY ROPE PROVIDED THE PRIVATE MATRIX BASED ON BISONAZOLINES MIRE AND THE MARTINES AND THE PRIVATE MATRIX BASED ON BISONAZOLINES MIRE AND THE MARTINES AND THE PRIVATE MATRIX BASED ON BISONAZOLINES MIRE AND THE MARTINES AND THE PRIVATE M	MELT ELECTROSPINNING: AN ECO-FRIENDLY WAY OF NANOFIBER AND GRAPHITIZED FIBRE PREPARATIONS USING NANOCELLULOSE	Haoyi Li	P013
Repair NEW MATERNAL REMOVAL TOOLS AND PROCESSES TO SAFELY EXPEDITE MAINTENANCE ON COMPOSITES STRUCTURES NEW MATERNAL REMOVAL TOOLS AND PROCESSES TO SAFELY EXPEDITE MAINTENANCE ON COMPOSITES STRUCTURES NEW MATERNAL REMOVAL TOOLS AND PROCESSES TO SAFELY EXPEDITE MAINTENANCE ON COMPOSITES STRUCTURES NEW MATERNAL REMOVAL TOOLS AND PROCESSES TO SAFELY EXPEDITE MAINTENANCE ON COMPOSITES STRUCTURES THE PRIERRANTION, PROCESSING AND HEALING OF DIELS AND PRIERRANGHED REPOXES AND THEIR PIBBRE-HEINT GREED POLYMER COMPOSITES THE ONE-POTS STRUCTURES, CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A 2 Monanc Cai BY MONOMERS THE ONE-POTS STRUCTURES, CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A 2 Monanc Cai BY MONOMERS MELAMINE-MELTSLOWN NOWNOVEN A HIGH-PERFORMANCE MATERIAL COMBINING FOR THE FIRST TIME THERMOSET MELAMINE WITH BY THERMOSET MATERIAL AND ACQUISITE OTHER PROPRIANCE MATERIAL COMBINING FOR THE FIRST TIME THERMOSET MELAMINE WITH BY THE PRIEMBER AND ACQUISITE OF THE PREPORT MAINTENANCE BENZOXAZINE RESINS FOR ADVANCED COMPOSITE APPLICATIONS ANTIFICATION OF A PAYLE THERE PROVES LOTY PROVED LOTY PROVED LOTY PROVED ANTIFICATION OF A PAYLE THERE PROVES LOTY PROVED LOTY PROVED LOTY PROVED ANTIFICATION OF A PAYLE THERE PROVES POLYMANILINE/PHENOL-DINNYLBERIZENE RESIN FOR COMPOSITE WITH ENHANCED ELECTRICAL AND MECHANICAL PROPERTIES PROVED POLYMANILINE/PHENOL-DINNYLBERIZENE RESIN FOR COMPOSITE WITH THENDIGHT-THICKNESS REINFORCEMENTS PROVIDED THE PROVED WITH THE PROVES BENZOX PROVIDED THE PROVED BENZOX PROVIDED THE PRO	EFFECT OF CFRP ON VORTEX-INDUCED VIBRATION OF A BRIMMED-DIFFUSER SHROUD FOR A WIND TURBINE	Taeyoung Kim	P014
FALLURA AND FELIABILITY ANALYSIS OF IN-SERVICE REPAIRED COMPOSITES MANYTENANCE ON COMPOSITE STRUCTURES James Mazza AND MATERIAL REMOVAL TOOLS AND PROCESSES TO SAFETY EXPERITE MANYTENANCE ON COMPOSITE STRUCTURES James Mazza AND RESIN and polymens THE ONE-POT SYNTHESIS, CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A? THE ONE-POT SYNTHESIS, CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A? THE ONE-POT SYNTHESIS, CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A? THE ONE-POT SYNTHESIS, CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A? THE ONE-POT SYNTHESIS, CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A? THE ONE-POT SYNTHESIS, CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A? THE ONE-POT SYNTHESIS, CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A? THE ONE-POT SYNTHESIS CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A? THE ONE-POT SYNTHESIS CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A? THE ONE-POT SYNTHESIS CHARACTERIZATION AND POLYMER PRISE TIME THERMOSET MELANINE WITH A CONTROLL OF THE PRISE TIME THERMOSET MELANINE WITH A CONTROLL OF THE PRISE TIME THERMOSET MELANINE WITH A CONTROLL OF THE PRISE TIME THERMOSET MELANINE WITH A CONTROLL OF THE PRISE TIME THERMOSET MELANINE WITH A CONTROLL OF THE PRISE TIME THERMOSET MELANINE WITH A CONTROLL OF THE PRISE TIME THERMOSET MELANINE WITH A CONTROLL OF THE PRISE TIME THERMOSET MELANINE WITH A CONTROLL OF THE PRISE TIME THERMOSET MELANINE WITH A CONTROLL OF THE PRISE TIME THE PRISE TIME THERMOSET MELANINE WITH A CONTROLL OF THE PRISE TIME TH	REAL-TIME SINGLE MOLECULAR STUDY OF A PRETREATED CELLULOSE HYDROLYSIS MODE AND INDIVIDUAL ENZYME MOVEMENT	Yanan Zhang	P015
REW MATERIAL REMOVAL TOOLS AND PROCESSES TO SAFELY EXPENTE MAINTENANCE ON COMPOSITE STRUCTURES RONDED COMPOSITE REPAIRS UNDER DRYCOLD AND HOT/WET ENVIRONMENTAL CONDITIONS THE PREPARATION, PROCESSING AND HEALING OF DIELS ALDER PROXIES AND THEIR FIBRE-REINFORCED POLYMER COMPOSITES Callum Brandox THE ONE-POT SYNTHESIS, CHARACTER/ZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A2 4 Waran Cal Waran	Repair		
BONDED COMPOSITE REPAIRS UNDER DRIVCOLD AND HOT/WET ENVIRONMENTAL CONDITIONS Rein and polymers THE ORE, PARADROW, PROCESSING AND HEALING OF DIELS ALDER EPOXIES AND THEIR FIBRE-REINFORCED POLYMER COMPOSITES CABLUM Branfood PO20 THE ORE, POT SYNTHESIS, CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A2 - Women Cai BIS MONOMERS SUMMERS S			P016
Resin and polymers THE PREPARATION, PROCESSING AND HEALING OF DIELS-ALDER EPOXIES AND THEIR FIBRE REINFORCED POLYMER COMPOSITES Callum Brodot P020 BM ONOMERS NEW THERMOSET MATRIX BASED ON BISONAZOLINES SILVEN THE REPOXES LEATH FROM THE PROPERTIES ANTIFICATION OF ARTH ETHER EPOXES LEATH FROM THE PROPERTIES ANTIFICATION OF ARTH ETHER EPOXES LEATH FROM THE PROPERTIES ANTIFICATION OF ARTH ETHER EPOXES LEATH FROM THE PROPERTIES ANTIFICATION OF ARTH ETHER EPOXES LEATH FROM THE PROPERTIES AND THE PROPERTIES POLYMAIL HE PROPERTIES POLYMAIL HE PROPERTIES SILVE OF THE ENERGY ABSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH THROM CORE AND CFIPE PACE SHEETS IS SILVEY OF THE ENERGY ABSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH THROM CORE AND CFIPE PACE SHEETS IS SILVEY OF THE ENERGY ABSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH THROM CORE AND CFIPE PACE SHEETS IS SILVEY OF THE ENERGY ABSORPTION CAPABILITY OF SANDWICH PARELS - EFFECT OF IMPACTOR GEOMETRY Jayantha Epoxenochi POXED RESPONSE OF ASAFPEEK COMPOSITE LATTICE STRUCTURES WITH FLOMETROS OF IMPACTOR GEOMETRY Jayantha Epoxenochi POXED RESPONSE OF ASAFPEEK COMPOSITE LATTICE STRUCTURES WITH FLOMETROS OF SANDWICH PAGE AND CAPABILITY OF THE PROPERTIES OF MACHINER MORE THE PROPERTIES OF SANDWICH STRUCTURES SOOPOUR BE AND CAPABILITY OF SANDWICH BEAMS WITH FLUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO CHONGLIFE DOES THE ATTICE STRUCTURES WITH FLOMETROS OF SANDWICH STRUCTURES SOOPOUR BE REPOXED OF CORPIGATED FOR EXAMDWICH BEAMS WITH FLUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO CHONGLIFE OF THE PROPERTIES AND EXAMDWICH	NEW MATERIAL REMOVAL TOOLS AND PROCESSES TO SAFELY EXPEDITE MAINTENANCE ON COMPOSITE STRUCTURES	James Mazza	P017
THE PREPARATION, PROCESSING AND HEALING OF DIELS-ALDER PROVIES AND THEIR FIBRER-REINFORCED POLYMER COMPOSITES CARRONNERS CHARCTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOX/ZINE RESINS DERIVED FROM A2 + Warran Cail P020 BENZON/ZINE RESINS DERIVED FROM A2 + Warran Cail P020 BENZON/ZINE RESINS DERIVED FROM A2 + Warran Cail P020 BENZON/ZINE RESINS DERIVED FROM A2 + Warran Cail Sulmer bissaxedoh P020 BENZON/ZINE RESINS DERIVED FROM A2 + Warran Cail P020 BENZON/ZINE RESINS DERIVED FROM A2 + Warran Cail CAIR SULMER FROM A ACCUSTIC PROPERTIES Larry Reyes P022 ANTIFILASTICATION OF AIM'LE THEIR EVOKES Larry Reyes P023 ANTIFILASTICATION OF AIM'LE THEIR EVOKES LOUID PROCESSABLE, THERMALLY STABLE, HYDROPHOBIC PHENOLIC-TRIAZINE RESINS FOR ADVANCED COMPOSITE APPLICATIONS P024 P025 SANDWISH THE ENERGY ABSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH FORM CORE AND DECHRANICAL PROPERTIES TULY OF THE ENERGY ABSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH FORM CORE AND CREATED THE ENERGY ABSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH FORM CORE AND CREATED THE ENERGY ASSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH FORM CORE AND CREATED THE ENERGY ASSORPTION CAPABILITY OF SANDWICH FARLES. FEFECT OF IMPACTOR GEOMETRY LOW VELOCITY IMPACT RESPONSE OF CORRUSATED CORE SANDWICH FARLES. FEFECT OF IMPACTOR GEOMETRY MODIFIED DOE TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES SOOPOUR LEE OF THE ENERGY ASSORPTION CAPABILITY OF SANDWICH FARLES. FEFECT OF IMPACTOR GEOMETRY MODIFIED DOE TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES SOOPOUR LEE OF THE SAND RESPONSE OF FORM CORE SANDWICH FARLES WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO CHORLES OF THE SANDWICH STRUCTURE SANDWICH FARLES SUBJECTED TO BENDING LOAD MODIFIED DIRECT RESPONSES OF HONEYCOMB SANDWICH FARLES SUBJECTED TO BENDING LOAD MODIFIED DIRECT RESPONSES OF HONEYCOMB SANDWICH FARLES SUBJECTED TO BENDING LOAD MODIFIED DIRECT RESPONSES OF HONEYCOMB SANDWICH FARLES	BONDED COMPOSITE REPAIRS UNDER DRY/COLD AND HOT/WET ENVIRONMENTAL CONDITIONS	Florian Röper	P018
INE ONE, POT SYNTHESIS, CHARACTERIZATION AND POLYMERIZATION OF HYPERBRANCHED BENZOXAZINE RESINS DERIVED FROM A2 + BIS MONOMERS SIN MONO			
NEW THERMOSET MATRIX BASED ON BISOXAZOLINES MELAMINE-MELTELOWN NOWWOVEN A HIGH-REFORMANCE MATERIAL COMBINING FOR THE FIRST TIME THERMOSET MELAMINE WITH SIRROR IN MORE AND ACCUSTIC PROPERTIES ANTIPLASTICSATION OF ARYL ETHER PROXIES LIAMY BEYES ANTIPLASTICSATION OF ARYL ETHER PROXIES FLEXURAL BEHAVIOUR OF FOAM CORED SANDWICH STRUCTURES WITH ENHANCED ELECTRICAL AND MECHANICAL PROPERTIES PLEXURAL BEHAVIOUR OF FOAM CORED SANDWICH STRUCTURES WITH FUNDED THICKNESS REINFORCEMENTS AND HIGH PROXIES OF ASALYPEEK COMPOSITE LATTICE STRUCTURES WITH FUNDED THICKNESS REINFORCEMENTS FLEXURAL BEHAVIOUR OF FOAM CORED SANDWICH STRUCTURES WITH FOAM CORE AND CFRP FACE SHEETS (Bignacio Carranza Quisade Pezz COMPOSITE LATTICE STRUCTURES WITH FUNDED THE COMPRESSION AND LOW VELOCITY IMPACT LOADING ARSH PROXIES OF ASALYPEEK COMPOSITE LATTICE STRUCTURES WITH FUNDED THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE! FRACTURE TOUGHNIESS AT THE INTERFACE OF SANDWICH STRUCTURES SOOSYOUR DCB MODIFIED DCB TESTS FOR MEASURING MODE! FRACTURE TOUGHNIESS AT THE INTERFACE OF SANDWICH STRUCTURES ADHESION OF DISSMILLAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERFACE OF SANDWICH STRUCTURES ADHESION OF DISSMILLAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERFACE OF SANDWICH STRUCTURE APPEAR AND			P019 P020
ELEAMINE-MELTB, OWN NONNYOWA A HIGH-PERFORMANCE MATERIAL COMBINING FOR THE FIRST TIME THERMOSET MELAMINE WITH SECRELLARY REPORTS. ANTIPLASTICSATION OF ARYL ETHER POXIES LIQUID PROCESSABLE, THERMALLY STABLE, HYDROPHOBIC PHENOLIC-TRIAZINE RESINS FOR ADVANCED COMPOSITE APPLICATIONS. A Antieside Taismin Poxed Poynanius-Repressive Poxed	B3 MONOMERS		
EXCELLENT THERMAL AND ACQUSTIC PROPERTIES LAMP REPOSE LUQUID PROCESSABLE, THERMALLY STABLE, HYDROPHOBIC PHENOLIC-TRIAZINE RESINS FOR ADVANCED COMPOSITE APPLICATIONS Avistedis Tsismis POZA ANTIPLASTICASTON OF ARM, ETHER REPOXIES LUQUID PROCESSABLE, THERMALLY STABLE, HYDROPHOBIC PHENOLIC-TRIAZINE RESINS FOR ADVANCED COMPOSITE APPLICATIONS Avistedis Tsismis POZA POLYANILINE PHENOL-DVINYLIBERAZEM RESIN FOR CFRP COMPOSITE WITH ENHANCED ELECTRICAL AND MECHANICAL, PROPERTIES TRACE SAMWICH STRUCTURES AND THE PENENCY ASSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH THROUGH-THICKNESS REINFORCEMENTS GIAINA BEBAUGURD OF FOAM CORED SANDWICH STRUCTURES WITH THROUGH-THICKNESS REINFORCEMENTS LOW VELOCITY MIPMCT RESPONSE OF CORRUSATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR AND CORE SHEETS Jayandia Expansion AND AND VELOCITY MIPMCT RESPONSE OF CORRUSATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY Jayandia Expansion Jayandia Expansion POZA RESPONSE OF ASJUPEKE COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING Jayandia Expansion Jayandia Expans			
LIQUID PROCESSABLE, THERMALLY STABLE, HYDROPHOBIC PHENOLIC-TRIAZINE RESINS FOR ADVANCED COMPOSITE APPLICATIONS Aristedis Tsiamins POZA POLYANILINE PHENOL-DVINYLIBENZENE RESIN FOR CFBP COMPOSITE WITH ENHANCED ELECTRICAL AND MECHANICAL PROPERTIES YO Zhou POZA SAMWKH STRUCTURES and MARCHES SAMWKH STRUCTURES AND PROME TO SAMDWICH STRUCTURES WITH THROUGH-THICKNESS REINFORCEMENTS CHARLE SHEARY ASSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH THROUGH-THICKNESS REINFORCEMENTS Ligracio Carriarsa Guisado POZA STUDY OF THE ENERGY ABSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH FOAM CORE AND CFBP FACE SHEETS Ligracio Carriarsa Guisado POZA LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS RESPONSE OF ASA/PERK COMPOSITE LATTICE STRUCTINES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES SOOQUIR Lee POSA NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO Chong L POSA REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS YINGGARD REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS YINGGARD APPESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING HARD PROSE PREPATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD MARGE PREDICTION IN QUASI-STRUCTURES WIND AND AND AND AND AND AND AND AND AND A		Simona Lavric	P022
POLYANILINE/PHENOL-DIVINYLBENZENE RESIN FOR CFRP COMPOSITE WITH ENHANCED ELECTRICAL AND MECHANICAL PROPERTIES Sandwich structures and materials FELEUJARL BEHAVIOUR OF FOAM CORED SANDWICH STRUCTURES WITH THROUGH-THICKNESS REINFORCEMENTS Ghilane Bragagnolo PO25 STUDY OF THE ENERGY ABSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH FOAM CORE AND CFRP FACE SHEETS Ignacio Carranza Guisado PO26 STUDY OF THE ENERGY ABSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH FOAM CORE AND CFRP FACE SHEETS Ignacio Carranza Guisado PO26 RESPONSE OF ASA/FEEK COMPOSTE LATTICE STRUCTURES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING Jidgiang Hu Jidgiang Hu PO26 MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES SOOyoung Lee PO30 MONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING HARRISON LIN PO33 FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD Mac Olwa PO34 DAMAGE PREDICTION IN QUASI-STATICALLY INDERTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL Abbeades PREDICTION IN QUASI-STATICALLY INDERTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL Abbeades PREDICTION IN QUASI-STATICALLY AND SANDWICH STRUCTURE Bing Xiao DECONSOLIDATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION OF	ANTIPLASTICSATION OF ARYL ETHER EPOXIES I	Larry Reyes	P023
Sandwich structures and materials FLEXURAL BEHAVIOUR OF FOAM CORED SANDWICH STRUCTURES WITH THROUGH-THICKNESS REINFORCEMENTS Ghilane Bragagnolo FO26 STUDY OF THE ENERGY ABSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH FOAM CORE AND CREP FACE SHEETS Ignacio Carraraza Guisado PO26 STRUCY OF THE ENERGY ABSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH FOAM CORE AND CREP FACE SHEETS Ignacio Carraraza Guisado PO26 SESPONSE OF ASA/PEEK COMPOSITE LATTICE STRUCTURES WIDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING Jayantha Epaarachchi PO28 RESPONSE OF ASA/PEEK COMPOSITE LATTICE STRUCTURES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING JAYANTHA COMPOSITE LATTICE STRUCTURES WIDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING JAYANTHA COMPOSITE LATTICE STRUCTURES WIDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING PO28 NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO Chong Li PO30 NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO Chong Li REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILIAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD Mee Oiwe PO34 DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL ADhendra Singh PO35 DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING ANDEAGAGE SEVELORATION OF MULTI-LAYER SANDWICH STRUCTURES USING A TWO-REGION PLATE MODEL ADhendra Singh PO35 MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE Mengchura XU MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE Mengchura XU MECHANICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURE WENGCHURAN AND PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SANDWICH STRUCTURE WENGCHURAN AN			_
FLEXURAL BEHAVIOUR OF FOAM CORED SANDWICH STRUCTURES WITH THROUGH-THICKNESS REINFORCEMENTS STUDY OF THE ENERGY ABSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH FOAM CORE AND CFPP FACE SHEETS Ignacio Carranza Guisado P027 LOW VELOCITY IMPACT RESPONSE OF CORRUSATED CORE SANDWICH STRUCTURES WITH FOAM CORE AND CFPP FACE SHEETS Ignacio Carranza Guisado RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING Jiqiang Hu P028 RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING Jiqiang Hu P029 MODIFIED DCB TESTS FOB MEASURINK MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES Sooyoung Lee P030 NONLINERAL LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO Chong Li P031 HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO Chong Li P032 ADHASION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING Harrison Lin P033 FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRIPHONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD MAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL Abhendra Singh P036 DECONSOLIDATION DE MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPILASTICS AS CORE IN SANDWICH STRUCTURE BING Xiso MICHERICAL SIMULATION OF IMPACT PERFORMANACE FOR PMIL FORM FILLED CORRUSATED SANDWICH STRUCTURE MICHERITES AND ENERGY ABSORPTION CAPABILITY OF HY'9RID HONEYCOMB SANDWICH STRUCTURE MICHERICAL SIMULATION OF IMPACT PERFORMANACE FOR PMIL FORM FILLED CORRUSATED SOARD SANDWICH STRUCTURE MICHERITES AND ENERGY ABSORPTION ASSORPTION OF SABILITY OF HY'9RID HONEYCOMB SANDWICH STRUCTURE MICHERICAL SIMULATION OF IMPACT PERFORMANACE FOR PMIL FORM FILLED FORM FILLED FORM SANDWICH STRUCTURE MICHERITES AND ENERGY ABSORPTION DECARDAL SANDWICH STRUCTURE MICHERICAL SANDWICH STR		Yu Zhou	P025
STUDY OF THE ENERGY ABSORPTION CAPABILITY OF SANDWICH STRUCTURES WITH FOAM CORE AND CFRP FACE SHEETS Ignacio Carranza Guisado P027 LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY Jayantha Epaarachchi P028 RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING Jiqiang Hu P029 MODIFIED DOB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES SOOYOUNG LEE P030 NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO Chong Li P031 NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO Chong Li P032 REPEATED IMPACT RESPONSES OF HONE YCOMB SANDWICH PANELS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO CHORG LI P032 REPEATED IMPACT RESPONSES OF HONE YCOMB SANDWICH PANELS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO CHORG LI P032 REPEATED IMPACT RESPONSES OF HONE YCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD Mee Own P034 REPEATED IMPACT RESPONSES OF HONE YCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD Mee Own P034 REPEATED IMPACT RESPONSES OF HONE YCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD Mee Own P034 RACTURE SEMENT SAND FACE SHEET BUCKLURG ANALYSIS OF CFREP HONE YCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD Mee Own P034 DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH STRUCTURES USING A TWO-REGION PLATE MODEL Abherdra Singh P035 DESIGN EXPLORATION OF MUTIL-LYERS SANDWICH STRUCTURES USING A TWO-REGION PLATE MODEL Abherdra Singh P035 DESIGN EXPLORATION OF MUTIL-LYERS SANDWICH STRUCTURES USING A TWO-REGION PLATE RODEL Abherdra Singh P035 DESIGN EXPLORATION DE HAPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE MECCHANICAL SINGLAL FROM P134 P134 P134 P134 P134 P134 P134 P134		01.1	
LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY Jayantha Epaarachchi P028 RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING Jiqiang Hu P028 MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TO UNDEN THE INTERFACE OF SANDWICH STRUCTURES SOOYOUNG LEE NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO Chong Li P031 NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO Chong Li P031 REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING HARRING AND FACE SHEET BUCKLING ANALYSIS OF CREPI-HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD AMAGE PREDICTION IN QUASI-STATICALLY INDEPTOE SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL Abherda Singh DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE BING XIAO NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ASSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE MECHANICAL PROPERTIES AND ENERGY ASSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE P039 NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE YUnqian Zhang P040 STRUCTURES VANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES VANALY AND SUMMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES VANALYSIS OF INTERFACE STRENGTH AND FORTECTIVE COATING USING LINSEED OIL HEALING AGENT D009-min Kim P040 Self-healing WINGROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT D009-min Kim P040 Self-healing MICROCAPSTRIES OF CARBON-BLACK IMPREGNATED THERMOPLAST	FLEXURAL BEHAVIOUR OF FOAM CORED SANDWICH STRUCTURES WITH THROUGH-THICKNESS REINFORCEMENTS		Booo
RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING Jiqiang Hu P029 MODIFIED DCS TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES SOOYOUNG LEE P030 NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO Chong Li P031 NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO Chong Li P031 P031 P031 P031 P031 P032 P032 P032 P032 P032 P032 P032 P032	STILDY OF THE ENERGY ARCORDINAL CARABILITY OF CANDWICH STRUCTURES WITH FOAM CORE AND SERR FACE SHEETS	- 0	P026
MODIFIED DEB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES SOOYUNG LEE PO30 NONLINEAR LOW-YELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO Chong Li PO31 REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING Harrison Lin PO33 PRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD Man Owa DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL Abhendra Singh PO34 DECONSOLIDATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE Bing Xiao PO37 MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE MENDAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE Peigan Yang PO40 THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURE PO40 SELF-HEALING PROPERTIES OF CARBON PRIBEAR REINFORCED THERMOPLASTIC SANDWICH STRUCTURE PO40 SELF-HEALING PROPERTIES OF CARBON BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION ANALYSACULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES JUNG Song PO40 SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION ARROWS ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Derya Czyurt HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM SECHOL SHAPPORD AND CHARAC		Ignacio Carranza Guisado	P027
NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO Chong L' P031 REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING Harrison Lin P033 REPEATURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD MAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL ABhendra Singh P034 DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL ABhendra Singh P035 DECONSOLIDATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE Bing Xiao P037 MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE Mengchuan Xu P038 NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE Pigna Yang P040 STRUCTURES MICHARLY SANDWICH STRUCTURES VIUNGING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES VIUNGING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES VIUNGING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES VIUNGING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES VIUNGING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES VIUNGING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES VIUNGING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION Fored Tamadóni Jahroni MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT DONG-min Kim P042 SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION JAHONG SE	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY J	Ignacio Carranza Guisado Jayantha Epaarachchi	P027 P028
REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING ADAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL ADHENDATION OF MULTI-LAYER SANDWICH SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL ADHENDATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING AND ADHENDATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE Bing Xiao PO37 MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE Mengchuan Xu P038 NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE P149 Yang P140 THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT Dong-min Kim P042 EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CRIP COMPOSITES Jungil Song P043 SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION Fareed Tamaddoni Jahroni DRANGE TAMBORY OF THE RADIATION OF SEAD AND AND CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HDPE WE ADMINISTRATIC TORROW OF THE RADIATION OF SEAD AND FABRICATION OF NANOCOMPOSITES Devya Czyurt A MORPHING WINGTIP STRUCTURE JIAN SUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPO	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING J	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu	P027 P028 P029
ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING HArrison Lin P033 FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL Abhendra Singh DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE Bing Xiao P037 MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE Mengchuan Xu P038 NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE Peiyan Yang P039 THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES WICKCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT Dong-min Kim P042 SELF-HEALING PROFERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION SELF-HEALING PROFERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION SEART-HEALING PROFERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION SEART composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM Seed Fazeli P045 SWATH ESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Cyvurt P047 A MORPHING WINGTIP STRUCTURE Jian Sun P048 LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING YEAR OF THE RADIATION OF PET USING DBD PLASMA MUSADDA ARANSIS OF INTERFACE STRENGTH AND FAILLER MODE OF INDENTED SMA WIRE COMPOSITES Derya Cyvurt P047 A MORPHING WINGTIP STRUCTURE HYDROPHILIZATION OF PET USING DBD PLASMA BANALYSIS OF INTERFACE STRENGTH AND FAILLER MODE OF INDENTED SMA WI	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee	P027 P028 P029 P030
DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL Abhendra Singh P035 DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING Anbazhagan Subramani P036 DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE Bing Xiao MCCHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE Mengchuan Xu P038 MCCHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE Mengchuan Xu P038 MUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE Peiyan Yang P039 THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES WANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES Vunqian Zhang P048 Self-healing MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT Dong-min Kim P042 SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING SMATCOMPOSITE STRUCTURES HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM SEACH COMPOSITE SEAM SARED CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HDPE WE LIANG SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Czyurt A MORPHING WINGTIP STRUCTURE Jian Sun P048 CANDER SEAM OF PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING P049 CANDER SEAM OF PET USING DBD PLASMA MUSADDA PLASM	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li	P027 P028 P029 P030
DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE Bing Xiao P037 MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE Mengchuan Xu P038 NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE Peiyan Yang P039 THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES WINGROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT Dong-min Kim P042 EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES Jungil Song P043 SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING Smart composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM Seed Fazeli P046 SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Ozyurt P047 A MORPHING WINGTIP STRUCTURE LASER INDUCED GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Ozyurt P048 LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING WANALYSIS OF INTERFACE STRENGTH AND FAILER MODE OF INDENTED SMA WIRE COMPOSITES DAY ON THE POSSON OF POTON	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li	P027 P028 P029 P030 P031
DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE Bing Xiao P037 MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE Mengchuan Xu P038 NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE Peiyan Yang P039 THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES WICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING PROPERTIES OF CFRP COMPOSITES Jungil Song P043 SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION Fared Tamaddoni Jahromi Smart composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM Saeed Fazeli P045 P046 SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Cyvirt P047 A MORPHING WINGTIP STRUCTURE Jian Sun P048 LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES MEGADAMA Musaddaq Azeem P051 AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin	P027 P028 P029 P030 P031
MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE Mengchuan Xu P038 NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE Peiyan Yang P039 THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH Xiaoyu Zhang P040 STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES WINGROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT Dong-min Kim P042 EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES Jungil Song P043 SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION Jahroni Smart composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM Saeed Fazeli P046 SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Czyurt A MORPHING WINGTIP STRUCTURE LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P046 STRUCTURE HYDROPHILIZATION OF PET USING DBD PLASMA Musaddaq Azeem P050 Structural analysis and optimisation HYDROPHILIZATION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa	P027 P028 P029 P030 P031 P032 P033
NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE Peiyan Yang P039 THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH Xiaoyu Zhang P040 STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES Yunqian Zhang P041 Self-healing MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT Dong-min Kim P042 EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES Jungil Song P043 SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING Smart composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM Saeed Fazeli P045 PREPARATION AND CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HDPE Wei Liang P045 SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Ozyurt P047 A MORPHING WINGTIP STRUCTURE Jian Sun P048 LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING Yanan Wang P049 ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES TO RIQUID MONITORING Yanan Wang P049 ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES TO RIQUID MONITORING YANAN WAS P040 AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL /**COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL **COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL **COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL **COMPOSITE STRUCTURES USING A T	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh	P027 P028 P029 P030 P031 P032 P033 P034
THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES Yunqian Zhang P041 Self-healing MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT Dong-min Kim P042 SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION Fareed Tamaddoni Jahromi Smart composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM Saeed Fazeli P045 PREPARATION AND CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HDPE Wei Liang P046 SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Ozyurt AMORPHING WINGTIP STRUCTURE LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA MISSING DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani	P027 P028 P029 P030 P031 P032 P033 P034 P035
STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES Yunqian Zhang P041 Self-healing MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT Dong-min Kim P042 EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES Jungil Song P043 SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION Jahroni Smart composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM Saeed Fazeli P045 PREPARATION AND CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HDPE Wei Liang P046 SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Ozyurt A MORPHING WINGTIP STRUCTURE Jian Sun P048 LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING Yanan Wang P049 ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA MUSADDA POSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036
Self-healing MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES Jungil Song P043 SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING Smart composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM PREPARATION AND CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HDPE SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Ozyurt P047 A MORPHING WINGTIP STRUCTURE LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE NUMBERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038
MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING Smart composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM PREPARATION AND CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HDPE SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Ozyurt P047 A MORPHING WINGTIP STRUCTURE LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037
EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING Smart composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM Saeed Fazeli P045 PREPARATION AND CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HDPE SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Ozyurt A MORPHING WINGTIP STRUCTURE LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038
SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING Smart composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM PREPARATION AND CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HDPE SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Ozyurt P047 A MORPHING WINGTIP STRUCTURE LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES Self-healing	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038 P039
MODELLING Smart composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM Saeed Fazeli P045 PREPARATION AND CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HDPE Wei Liang P046 SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Ozyurt P047 A MORPHING WINGTIP STRUCTURE LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES Self-healing MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT [1]	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang Vunqian Zhang	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038 P040 P041
HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM PREPARATION AND CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HDPE SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Ozyurt P047 A MORPHING WINGTIP STRUCTURE LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING Yanan Wang P049 ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES THE ANALYTICAL AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES Self-healing MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang Yunqian Zhang Dong-min Kim Jungil Song	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038 P040 P041
PREPARATION AND CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HDPE SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Ozyurt P047 A MORPHING WINGTIP STRUCTURE LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING Yanan Wang P049 ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE MECHANICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES Self-healing MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION FEFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang Yunqian Zhang Dong-min Kim Jungil Song Fareed Tamaddoni	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038 P040 P041
SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES Derya Ozyurt P047 A MORPHING WINGTIP STRUCTURE Jian Sun P048 LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING Yanan Wang P049 ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE INUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES SEIF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang Yunqian Zhang Dong-min Kim Jungil Song Fareed Tamaddoni	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038 P040 P041
A MORPHING WINGTIP STRUCTURE LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD ID DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE INUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES WANDFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING Smart composite structures	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang Yunqian Zhang Dong-min Kim Jungil Song Fareed Tamaddoni Jahromi	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038 P040 P041
LASER INDUCED GRAPHENE PAPERS ENABLED FUNCTIONAL COMPOSITES FOR LIQUID MONITORING Yanan Wang P049 ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE INMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE IN HEADALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES Self-healing MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING SMART COMPOSITE STRUCTURES HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang Yunqian Zhang Dong-min Kim Jungil Song Fareed Tamaddoni Jahromi	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038 P040 P041 P042 P043 P044
ANALYSIS OF INTERFACE STRENGTH AND FAILURE MODE OF INDENTED SMA WIRE COMPOSITES Tongzhou Zhu P050 Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES Self-healing MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING Smart composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM REPEARATION AND CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HDPE	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang Yunqian Zhang Dong-min Kim Jungil Song Fareed Tamaddoni Jahromi Saeed Fazeli Wei Liang	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038 P040 P041 P042 P043 P044
Structural analysis and optimisation HYDROPHILIZATION OF PET USING DBD PLASMA Musaddaq Azeem P051 AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES SONDLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC SANDWICH STRUCTURES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang Yunqian Zhang Dong-min Kim Jungil Song Fareed Tamaddoni Jahromi Saeed Fazeli Wei Liang Derya Ozyurt	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038 P040 P041 P042 P043 P044 P044
HYDROPHILIZATION OF PET USING DBD PLASMA Musaddaq Azeem P051 AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES SONDLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING SWATT COMPOSITE STRUCTURE HARMONIC AND TRANSIENT DYNAMIC RE	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang Yunqian Zhang Dong-min Kim Jungil Song Fareed Tamaddoni Jahromi Saeed Fazeli Wei Liang Derya Ozyurt Jian Sun	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038 P040 P041 P042 P043 P044 P044 P045 P046 P047
AN ASYMPTOTIC SOLUTION TO DENSITY DISTRIBUTION OF GRADED CELLULAR MATERIALS WITH A CONSTANT IMPACT LOAD Baixue Chang P052	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF AS4/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE IN HUMBRICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES SELF-HEALING PROPERTIES OF PRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING SMART COMPOSITE STRUCTURE HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM SPEPARATION AND CHARACTERIZATION OF THE RADIATI	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang Yunqian Zhang Dong-min Kim Jungil Song Fareed Tamaddoni Jahromi Saeed Fazeli Wei Liang Derya Ozyurt Jian Sun Yanan Wang	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038 P040 P041 P042 P043 P044 P044 P044 P045 P046 P047 P048
	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF ASA/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DCB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES NONLINEAR LOW-VELOCITY IMPACT RESPONSE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO ON HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE MECHANICAL PROPERTIES AND EMERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PIM FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES MANUFACTURING AND COMPARISON OF SPRINGBACKED CARBON FIBER REINFORCED THERMOPLASTIC SANDWICH STRUCTURES MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING SMATCOMPOSITE STRUCTURE HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FABRICATION OF NANOCOMPOSITES 4 MORPHING WINGTIP STRUCTURE 1 A MORPHING WINGTIP STRUCTURE 1 A MOR	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang Yunqian Zhang Dong-min Kim Jungil Song Fareed Tamaddoni Jahromi Saeed Fazeli Wei Liang Derya Ozyurt Jian Sun Yanan Wang Tongzhou Zhu	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038 P040 P041 P042 P043 P044 P044 P045 P046 P047 P048 P049 P050
VIRTUAL CALCULATION OF THE B-BASIS ALLOWABLES OF NOTCHED COMPOSITE LAMINATES Carolina Furtado P053	LOW VELOCITY IMPACT RESPONSE OF CORRUGATED CORE SANDWICH PANELS - EFFECT OF IMPACTOR GEOMETRY RESPONSE OF ASA/PEEK COMPOSITE LATTICE STRUCTRUES UNDER THE COMPRESSION AND LOW VELOCITY IMPACT LOADING MODIFIED DEB TESTS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES SOME AND ADDRESS FOR MEASURING MODE I FRACTURE TOUGHNESS AT THE INTERFACE OF SANDWICH STRUCTURES SOME AND ADDRESS OF HONEYCOMB SONDE OF SANDWICH BEAMS WITH FUNCTIONALLY GRADED NEGATIVE POISSON'S RATIO HONEYCOMB CORE REPEATED IMPACT RESPONSES OF HONEYCOMB SANDWICH PANELS ADHESION OF DISSIMILAR POLYMER-METAL COMPOSITE MATERIAL BY MECHANICAL INTERLOCKING FRACTURE BEHAVIOR AND FACE SHEET BUCKLING ANALYSIS OF CFRP/HONEYCOMB SANDWICH PANELS SUBJECTED TO BENDING LOAD. DAMAGE PREDICTION IN QUASI-STATICALLY INDENTED SANDWICH COMPOSITE STRUCTURES USING A TWO-REGION PLATE MODEL. DESIGN EXPLORATION OF MULTI-LAYER SANDWICH STRUCTURES TO TRANSVERSE LOADING DECONSOLIDATION BEHAVIOR OF CARBON FIBER REINFORCED THERMOPLASTICS AS CORE IN SANDWICH STRUCTURE RECHANICAL PROPERTIES AND ENERGY ABSORPTION CAPABILITY OF HYBRID HONEYCOMB SUPERSTRUCTURE NUMERICAL SIMULATION OF IMPACT PERFORMANCE FOR PMI FOAM FILLED CORRUGATED BOARD SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURE THE ANALYTICAL AND NUMERICAL CHARACTERIZATION REGARDING INDENTATION OF COMPOSITE HONEYCOMB SANDWICH STRUCTURES Self-healing MICROCAPSULE-BASED SELF-HEALING PROTECTIVE COATING USING LINSEED OIL HEALING AGENT EFFECT OF VASCULAR TUBES DESIGN ON MECHANICAL AND SELF-HEALING PROPERTIES OF CFRP COMPOSITES SELF-HEALING PROPERTIES OF CARBON-BLACK IMPREGNATED THERMOPLASTIC POLYURETHANE PROCESSED VIA FUSED DEPOSITION MODELLING SMATT composite structures HARMONIC AND TRANSIENT DYNAMIC RESPONSE OF A SMART LAMINATED STEPPED COMPOSITE BEAM PREPARATION AND CHARACTERIZATION OF THE RADIATION CROSSLINKED SHAPE MEMORY EVA/HOPE SYNTHESIS OF GRAPHENE QUANTUM DOTS FROM LOW COST MATERIALS AND FA	Ignacio Carranza Guisado Jayantha Epaarachchi Jiqiang Hu Sooyoung Lee Chong Li Yinggang Li Harrison Lin Mae Oiwa Abhendra Singh Anbazhagan Subramani Bing Xiao Mengchuan Xu Peiyan Yang Xiaoyu Zhang Yunqian Zhang Dong-min Kim Jungil Song Fareed Tamaddoni Jahromi Saeed Fazeli Wei Liang Derya Ozyurt Jian Sun Yanan Wang Tongzhou Zhu Musaddaq Azeem	P027 P028 P029 P030 P031 P032 P033 P034 P035 P036 P037 P038 P039 P040 P041 P042 P043 P044 P044 P045 P046 P047 P048 P049 P050

THURSDAY 15 AUGUST POSTER SESSION		
Poster title	Presenter name	Poster no
DESIGN OF SEMI-COMPLEX PARTS USING ANISOTROPIC CARBON FIBER CARD WEB REINFORCED THERMOPLASTICS	Yasuyuki Furuta	P054
REDESIGN AND OPTIMIZATION OF THERMAL PROTECTION SYSTEM FOR ATMOSPHERIC REENTRY	Guokai Han	P055
EXPERIMENTAL AND SIMULATION STUDY OF GFRP WITH LOCAL FIBRE DEFLECTION UNDER BEARING LOADS	Lars Thorsten Hefft	P056
OPTIMIZING DESIGN OF TRUSS STRUCTURES VIA AN AUGMENTED PARTICLE SWARM OPTIMIZATION ALGORITHM	Shih-Lin Hung	P057
DAMPING OPTIMIZATION OF LAMINATED PLATES BASED ON COMPLEX MODULUS APPROACH	Masaki Kameyama	P058
CLASSIFICATION AND PROPERTIES OF THREE-DIMENSIONAL TEXTILE PREFORMS	Zhenyu Ma	P059
LIGHTWEIGHT DESIGN OF COMPOSITE BODY FOR ELECTRIC MICROBUS	Pongpat Sirisobrana	P060
Structural health monitoring	-	
EXPERIMENTAL CHARACTERIZATION AND MODELLING OF MECHANICAL BEHAVIOR OF MICROCAPSULES IN COMPOSITES	Andrey Aniskevich	P061
DETECTION OF DAMAGES ON COMPOSITE PLATES DUE TO LOW VELOCITY IMPACT USING CARBON FIBERS	Salem Bashmal	P062
DAMAGE VISUAL INDICATION SYSTEM FOR POLYMER COMPOSITE STRUCTURES	Olga Bulderberga	P063
SMART MECHANOLUMINESCENT SHAPE MEMORY FILM FOR FLEXIBLE STRESS SENSING	Yang He	P064
DAMAGE DETECTION USING DIRECT-WRITE PIEZOELECTRIC TRANSDUCERS AND LAMB WAVES IN COMPOSITE MATERIALS	Marilyne Philibert	P065
INFLUENCE OF OPTICAL FIBER SENSOR PLACEMENT ON CFRP LAMINATES FOR PROCESS AND STRUCTURAL HEALTH MONITORING	Helena Rocha	P066
STRAIN SENSING OF EPOXY RESIN USING POROUS CARBON NANOTUBE/GRAPHENE COMPOSITE BUCKYPAPER	Guangming Yang	P067
Testing methods		
SINGLE FIBER PULL-OUT TEST FOR THE MATERIAL SELECTION OF A HYBRID RESIN COMPOSITE	Holger Buettemeyer	P068
RESIN TREATMENT FOR RELIABLE TRANSVERSE SHEAR STRENGTH ASSESSMENT IN AEROSPACE STRUCTURES	Tomas Chuagui	P069
EFFECTS OF GEOMETY AND STACKING SEQUENCE ON APPARENT POISSON'S RATIO OF QUASI-ISOTROPIC LAMINATE CFRPS UNDER THE COMPRESSION TESTS	Eiichi Hara	P070
AN INNOVATIVE CIRCULAR RING METHOD FOR MEASURING YOUNG'S MODULUS OF THIN FLEXIBLE MULTI-LAYERED MATERIALS (COMPRESSIVE METHOD)	Atsumi Ohtsuki	P071
CHARACTERIZATION AND STATISTICAL ANALYSIS OF SINGLE FIBER STRENGTH OF FIBERS AT VARIOUS PROCESSING STAGES	Ashok Rajpurohit	P072
A NOVEL TEST METHOD TO INDUCE BI-AXIAL STRESS STATES IN THIN PLY CARBON COMPOSITES UNDER COMBINED LONGITUDINAL COMPRESSION AND TRANSVERSE TENSION	Tamas Rev	P073
MECHANICAL CHARACTERIZATION OF HIGH PERFORMANCE THERMAL DECOUPLING UNITS IN BUILDING ENVELOPS	Florian Röper	P074
AXIAL COMPRESSION TESTING OF CARBON FIBERS	Shipeng Zhu	P075
Textile-based composites		
DEVELOPMENT OF A FAST DRAPING ALGORITHM USING MULTIFACTORIAL LOCAL SHEAR SIMULATIONS	Jacob Hoffer	P076
NUMERICAL STUDY ON MECHANICAL PROPERTIES INFLUENCING BALLISTIC IMPACT BEHAVIOR OF WOVEN FABRICS USING CONSTANT TOUGHNESS APPROACH	Sagar Ingle	P077
TENSILE PROPERTIES AND POISSON'S RATIO OF PET NEEDLE-PUNCHED NONWOVEN FABRIC PREPARED BY THERMOCOMPRESSION BONDING	Jae-chul Lee	P078
FATIGUE BEHAVIOR OF UN-NOTCHED AND NOTCHED 3D BRAIDED COMPOSITES	shuangqiang Liang	P079
IMPACT PROPERTIES OF HELICOIDAL STRUCTURE OF CARBON/EPOXY COMPOSITES	Mazhar Peerzada	P080
BUCKLING PROPERTY OF PLAIN WEAVE FABRIC COMPOSITE LAMINATE CONSIDERING INTRALAMINAR INHOMOGENEITY	Kazushi Sugiyama	P081
RECONSTRUCTION OF MESOSCALE TEXTILE COMPOSITES USING MICRO-CT IMAGE & COMPUTER VISION ALGORITHM	Congyuan Tao	P082
EFFECT OF TACKIFICATION ON IN-PLANE SHEAR BEHAVIOURS OF BIAXIAL WOVEN FABRICS IN BIAS EXTENSION TEST	Xiaoran Zhao	P083
Three-dimensional composites		
STUDY ON CFRP PI-BEAM PARAMETRIC AND STRENGTH ANALYSIS	Geon Tae Park	P084
THE OPTIMIZATION OF PROCESS PARAMETERS OF THREE-DIMENSIONAL NEEDLED COMPOSITES BASED ON ANN AND GA	Yunchao Qi	P085
Tribology and wear		
WEAR PROPERTIES OF PAN- AND PITCH-BASED CARBON FIBER REINFORCED PLASTICS WITH SIC-NANOPARTICLES	Shigenori Inoue	P086
NON-ASBESTOS POLYBENZOXAZINE COMPOSITES: FRICTION AND MECHANICAL PROPERTY	Chanchira Jubsilp	P087
FATIGUE LIFE PREDICTION OF EPOXY COATING ON COMPOSITES SUBJECTED TO WATERDROP IMPACT	Ameya Kaore	P088
TRIBOLOGICAL CHARACTERISTICS OF MICROWAVE PROCESSED KENAF/HDPE COMPOSITES UNDER DRY SLIDING WEAR	Manoj Kumar Singh	P089
THE INFLUENCE OF FABRIC ON THE WEAR-RESISTING PROPERTY OF SELF-LUBRICATING COMPOSITS	Mingming Yu	P090
WATER VAPOR CORROSION BEHAVIOR AND FAILURE MECHANISM OF PLASMA SPRAYED MULLITE/LU2SI207-LU2SI05 COATINGS	Xunxun Hu	P091

