

From steel to composite: cost and weight reductions using filament winding for wave energy converters

<u>D. Vale^{1*}, J. Ljungbäck², M. Nilsson², J. Verdeguer², A. Fox², A. Bonel², R. Harnden², C. Gomes¹, R. Anderssen³, S. Hamre³, and K. Sevenius³</u>

¹ CorPower Ocean Lda, Edifício da Comunidade Portuária - Sala B, 4935-160 Viana do Castelo, Portugal, ² CorPower Ocean AB, Västberga Alle 60, 126 30 Stockholm, Sweden, ³ OPS Solutions AS, Buråsen 20, 4636 Kristiansand, Norway *diogo.vale@corpowerocean.com

Motivation

Ocean energy has a large potential to contribute to the transition to a zero-carbon society and bring stability to the clean energy mix.

Wave energy in particular can complement wind and solar power with a reliable base load to reduce the required storage capacity.

Development of a pre-tension cylinder in composite material aiming for a weight and cost reduction that fulfills the performance requirements of the wave energy converter, such as pressure cycles and wear distribution.

Challenges

Pre-tension cylinder (PTC)

- A pressure vessel that applies a force along the mooring line to the ulletseabed
- High internal pressure (up to 300 bar) ightarrow
- Maximum linear velocity, of piston inside PTC, as high as 4.5 m/s ightarrow
- Smooth and wear resistant internal surface against which a piston can \bullet operate for several million cycles
- Estimated subsystem mass reduction of 25% \bullet

Filament winding

Manufacturing challenges: achieve fibre angles along cylinder's centreline axis as low as possible.

- Current fibre angle is around 15° due to "cylinder's" shape
- Dimensions: Nominal internal diameter 850 mm Minimum internal diameter 440 mm 9800 Length mm

Liner

Material selection in this component's development is critical and very important due to highly aggressive wear distribution: there is constant JUSY contact between the piston seals and guide rings and is heavily dependent on contact pressure.

Specifications:

- Avg. sliding speed = 1.15 m/s (max. 4.5 m/s)
- Maximum design media temperature = 100 °C
- Diameter expansion at test pressure < 6 mm
- Lifetime > 20 years

Figure 2. Filament winding of scaled GFRP test cylinder

Bolt connection

Test and simulation driven development of composite embedded steel bolt interface.

lon