

TWENTY-THIRD INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS (ICCM23)

FEASIBILITY STUDY OF A CFRP BOSS FOR APPLICATION IN

LINERLESS COMPOSITE TYPE V TANKS

A. Scherer¹, Ch. Romeiks¹, M. Groß¹, F. Hübner² and T. Dickhut¹

CFRP VS. METALL BOSS

- Less structural weight
- Reduced CTE mismatch \rightarrow reduced thermal stresses in dome/boss-interface
- Enhanced bonding behavior in dome/bossinterface
- Reduced heat entry in tank system

Load path conform

SPIRAL WEAVE FABRIC

- Fibers oriented in
 - 0° radial

- **Highly toughened** epoxy matrix for cryogenic application
- **Enhanced micro**crack resistance
- **In-Situ application** during preforming
- High tear-out force

• 90° circumferential

2K TOUGHENDED LIQUID INFUSION C-Fiber in Epoxy SYSTEM

- $K_{\rm IC} = 0.97 \pm 0.18 \,\rm MPa \,m^{1/2}$
- G_{IC} 360 J/m²
 - → Fracture energy release maximized for enabling interlaminar toughening mechanisms

5 µm Plastic

Crack

Plastic Zone: $R_{\rm P}$ = 2-3 μ m

TEAR-OUT TESTING

Vacuum infusion process

RTM process in next step for less voids

Chair of Composite Materials and Engineering Mechanics – Institute Aeronautical Engineering, Bundeswehr University Munich, Neubiberg, Germany

² Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany

Project CryoFuselage (LABAY108A) Sponsored by

Bavarian Ministry of Economic Affairs, Regional Development and Energy

