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Introduction ’ *
The fiber-matrix interface is a critical region that directly | I Fracture surface
influences the mechanical performance and overall i i Adhesive
properties of these materials. Weak interfacial bonding can ! ! Fiber 2 ’2-"’-32:} ;
lead to several issues, including: I B | i Cohesive
- Reduced mechanical properties E oample e mesmennnssedl o
* Delamination and crack propagation ! [ !
+ Restricted applications . Adhesive  Silicon Mold ' "FailreFiver Failre.
+ Impaired durability E fape i -
: : Adhesive Cohesive
: : Failure Fiber Failure
i Tensile fiber bundle test sample preparation i Pamag.e caused by adhesion at the ﬁber/_matrix interfacgs
i The dimensions of FBT specimens were calculated i In the fiber bundle tensile tests was classified as adhesive
| _ , S and cohesive damage. Adhesive damage occurs when the
i according to the Type IV specimen example specified N i adhesive strength between the bonded materials is
I ASTM D638 standard. Carbon fiber bundles were pla_ced n . Insufficient, while cohesive damage is generally referred to
. the central channel of the mold. Then, the epoxy resin was . when the material's load-carrying capacity is exceeded.
The mechanical performance of FRPs can be enhanced by ' poured into the mold cavities and left to cure at room The f cohesive d - : inent |
. . . . . . .. . . . presence of cohesive damage regions is prominent in
incorporating nano-sized fillers into the polymer matrix. i conditions for 24 hours. Shimadzu AGS-X tensile testing i the surfaces of HNTs and GNPs modified samples [3].
Nanoparticle type and morphology affect the polymer .+ machine was used for the specimens’ meso mechanical . _ _ .
matrix's fracture toughness. Fracture toughness-enhancing ' performance tests. The applied loads were measured by a | 1€ presence of cohesive damage is noticeable in all
mechanisms such as crack pinning, deflection, peeling, and | load cell with capacity of 10 kN. . silane-modified samples. In the mesoscale tensile tests,
plastic deformation are closely related to nanoparticle i ———————————————————————————————————————————————————— i tcoheswe c]l%ma%e c(I:Iant be_l ati”bUt?g t‘?h :Ee h:gher
morphoogy [1] - Results and Discussions e e g ensile strengih wilh he surface
SN Qg == ' FTIR analysis reveals the existence of characteristic peaks of |
Crack bridging \ o Dutiiout o . APTES on the GNP and HNT surfaces, indicating the high I
De'“m'"“'" —\ branching ﬁb;,ﬂ S i efficiency of the chemical surface modification. i
; —Go Si-0-Si — HNT Si-0-Si !
The fiber bundle test (FBT) offers several advantages for T COAPTES : —— HNT-APTES * |
evaluating the interfacial performance of carbon-epoxy | 3 s ';”2 I
composites modified with nanofillers. 3 s i
F tensile ! 5 5 !
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* Micro-scale prediction 1 Transverse fiber bundle tensile strength i
) ) ) Compat!blllty with real E Fiber-matrix interfacial strength between graphene oxide and i
composites . . halloysite nanotube added epoxy matrix and carbon fiber |
* Early-stage evaluation bundle: (top) before surface treatment of nanoparticles,
T T * Complementary to other i (bottom) when nanoparticle surfaces are chemically modified i
Frensite tests ' with APTES :
---------------------------------------------------- E a W EP E
_ . ! — 0 GO/EP ' Scanning electron microscopy photographs of the fracture
Motivation E s :ggIﬁE:T/EP . surfaces after the transverse fiber tensile test, A) epoxy, B)
. - L - . = 57 . epoxy with 0.1% by weight graphene oxide, C) epoxy with
. Explorg using nanofillers with different morphologies, B | . | 1&) b);/ weight of hglloys?ce ngangtubes ) epox)y vr\)/ithyo.1%
halloysite nanotubes (1D) and graphene nanoplatelets g 162 I | h aht N 'd d4 1% b, aht of hallovsit
(2D), and chemically modified surfaces to strengthen the | o : ngnvc\;ilj%esgrap ehe oxide and 170 Dy weight ot halloysite
fiber/matrix interphase. I 2 107 |
- By incorporating these nanofillers into the polymer " os it .+ With GO/EP (B) and HNT/EP (C) fiber-matrix interfacial
matrix, the research aims to investigate their impact on 0 ! interactions  increased and interfacial  strength
interfacial bonding and evaluate how they contribute to 1 Nanoparticles incorporated into the epoxy increase the fiber- improved. | | |
enhanced mechanical properties using FBT. ' matrix interface strength. The effect of crack pinning and crack | * However, the increased surface roughness in halloysite
____________________ JTTTTTTTUTITTTTTTTTTTTTTTTTTTTTT 4 branching mechanisms for epoxy modified with graphene modification reveals the effectiveness of toughening
Sample Preparation and Testing i oxide nanoparticles, in additon to toughness enhancing i mechanisms, \_/vhich are more common in the impact of
: .. ' mechanisms such as crack bridging and nanotube pinning for | 1D nanoparticles on the fracture performance,
0 I N . a hybrid epoxy matrix with halloysite nanotubes, explain the especially bridging and nanotube pinning [4]
% \'/LJL\L | ' effect of different morphologies of these two nanoparticle types ! ----------------------------------------------------
EO . LI | 1 on fiber-matrix interfacial strength [2]. i Conclusion
— S B i Bl E The impact of nanoparticle reinforcement on fiber-matrix
Halloysite nanotubes (1D) Graphene nanoplatelets (2D) ! _ 3> 1 GO-S/EP ! interfacial mechanical performance in fiber-reinforced
L oH  APTS Tomen 1o \> : c‘EE 30 |1 HNT-S/EP . polymer composites are investigated using meso-scale
FOH "o | O ; N e i = | T GOSHINT-S/ER 2 . fiber bundle tests for evaluating interfacial properties.
| o o _ &_ ok "%o ol \ ' Fiber bundle tests provided practical and accurate
" APTSHNT | 5 | - . mechanical insights into the fiber-matrix interface. This
APTES modification of HNTs and GNPs E 2 N . study serves to following tracks for composites:
(20 KHz, 15 min) T i 5 O i * Enhanced mechanical properties
. | 5 | * Tailored toughening mechanisms
i i O i * Advancements in material design
Acctonitrile ol | . The functionalization of nanoparticle surfaces with chemical + ___________________________ . __
Curtngagent o ' methods and crosslinkers such as APTES both facilitates the
T€Y v [ @0k 15 min ' dispersion of nanoparticles in the resin. It improves the ! References
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