

Bristol Composites Institute

EPSRC Centre for Doctoral Training in Composites Science, **Engineering and Manufacturing**

Engineering and **Physical Sciences Research Council**

Equivalent elastic properties of morphing sandwich panels with cellular cores and flexible facesheets

Nuhaadh Mohamed Mahid, Mark Schenk, Branislav Titurus, Benjamin King Sutton Woods

1. Background

Semi-Aeroelastic Hinge

Extended wingspan in flight, folded wingtip when approaching airport gate.

Flare angle helps to alleviate gust load.^[1]

A morphing fairing needed to cover the hinge joint.

3. Homogenization

Cores with zero, negative and positive Poisson's ratios are analysed.

Analytical Approach

Equivalent elastic properties (i.e., E_{11} , E_{22} , v_{12} , G_{12}) of the core evaluated by considering deformation of unit cell walls.^[3]

The objective is to design a fairing with low torsional stiffness and low cross-section warping as the wingtip folds.

2. Overall Design Problem

Morphing sandwich panel with cellular core and elastomeric facesheets for fairing.^[2]

Homogenisation of panel elastic properties to equivalent shell stiffness matrix.

Finite element model with

Shell stiffness matrix evaluated for a panel with isotropic facesheets and equivalent core.

Finite Element Approach

constitutive response

 B_{11} B_{12} B_{16}

 $D_{11} \quad D_{12} \quad D_{16}$

 $D_{22} \quad D_{16}$

 D_{66}

 B_{22}

 A_{11} A_{12} A_{16}

sym

 $A_{22} \quad A_{26}$

Shell deformation modes of a unit cell with multiscale periodic boundary conditions are used to evaluate equivalent shell stiffness matrix.^[4]

4. Preliminary Results

150% Significant error in analytical values Error relative to the FEA centage. values. Future work should explore the

bristol.ac.uk/composites

- A. Castrichini, V. H. Siddaramaiah, D. E. Calderon, J. E. Cooper, T. Wilson, and Y. Lemmens, "Preliminary investigation of use of flexible folding wing tips for static and dynamic load alleviation," The Aeronautical Journal, vol. 121, Art. no. 1235, Nov. 2016.
- 2. B. K. S. Woods and R. M. Heeb, "Design principles for geometrically anisotropic thermoplastic rubber morphing aircraft skins," *Journal of* Intelligent Material Systems and Structures, vol. 34, pp. 29–46, May 2023.
- K. R. Olympio and F. Gandhi, "Zero Poisson's Ratio Cellular Honeycombs for Flex Skins Undergoing One-Dimensional Morphing," Journal of 3. Intelligent Material Systems and Structures, vol. 21, Art. no. 17, Dec. 2009.
- 4. L. Gigliotti and S. T. Pinho, "Exploiting symmetries in solid-to-shell homogenization, with application to periodic pin-reinforced sandwich structures," Composite Structures, vol. 132, pp. 995–1005, Nov. 2015.