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 Introduction Nanocrystals have emerged as attractive

candidates for aerospace, biological medicine, electronic devices,

chemical catalytic, and other fields, due to their unique

mechanical, physical, and chemical properties.
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(d) D = 10.3 nm

Next, based on the solid state physics and Lennard-Jones

potential, and further introduced the relationship between

cohesive energy and average coordination number, as well as the

size dependent on atom distance in equilibrium. The size and

dimensionality effects on Young’s moduls of nanocrystals can be

given as:

 Theoretical model Firstly, a new model was developed to

comprehend the influences of size and dimensionality on cohesive

energy by considering the surface stress and size dependent on

surface energy, and it can be expressed as follows:
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A model is established to characterize the size and dimensionlity effects on cohesive energy of nanocrystals by considering the surface stress and size effect on surface energy.

The size, dimensionality, and temperature effects on Young’s modulus of nanocrystals is developed, which contains no adjustable parameters and built up the quantitative

relationship among Young’s modulus, cohesive energy, atom distance, thermal expansion codfficient and specific heat capacity at constant volume.

Young’s modulus increases or decreases with the decreasing of size when the temperature is at 0 K or 300 K. This is because of the competitive relationship between the

enhancement and the reduction in Young’s modulus by bond contraction and thermal stability decline.

 Conclusison

 Model Verfication

Size and dimensionality dependent cohesive energy model
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(b) D = 7.66 nm
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