TWENTY-THIRD INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS (ICCM23) Fabrication of structure controllable nanocomposite with CNT aerogel by reactive infiltration of polyamide 6

*Suyeon Lee¹, Ahram Jeong¹, Minju Jeong², Youngseok Oh² and Dong Gi Seong^{1,3+}

1 School of Chemical Engineering, Pusan National University, Republic of Korea 2 Composites Research Division, Korea Institute of Materials and Science, Republic of Korea **3** Department of Polymer science and engineering, Pusan National University, Republic of Korea +E-mail: dgseong@pusan.ac.kr

Polymer Composite _aboratory

Introduction

Problems in conventional nanocomposites **(1)** Inhomogeneous dispersion of nanoparticles \rightarrow Non-uniform properties ╈ Nano particle Resin Nano-composite Resin Aggregation Aerogel **(2)** Insufficient properties (electrical/thermal conductivity, mechanical properties)

Experiment

***** Materials

- CNT aerogel (CA, density 0.05~0.1 g/cm^3)
- ε-Caprolactam (Monomer, melting point 68°C, Sigma Aldrich, USA)
- Ethylmagnesium bromide solution (Catalyst, 3.0 M in diethyl ether, Sigma Aldrich, USA)
- Hexamethylene diisocyanate

< The images of nano-pores in CNT aerogel >

Experiment

CNT aerogel/Polyamide 6 composites (CAPA) were fabricated by dipping and T-RTM (Thermoplastic resin transfer molding) method using reactive in-situ polymerization.

Results & Discussion

Measurement of crystallite size of CAPA by dipping and T-RTM method

Results & Discussion

Measurement of thermal properties (DSC) of CAPA by dipping and T-RTM method

• DSC

	$\mathbf{I}_{m}(\mathbf{C})$	$\mathbf{L}_{c}(\mathbf{C})$
Dipping-PA6	218.2/205.9	178.8
Dipping-CAPA	218.2/208.6	172.6/183.4
TRTM-PA6	218.2	175.1
TRTM-CAPA	218.2	175.1/191.6

Morphology characterization of CAPAs using different process (FE-SEM)

Dipping (cross section)

T-RTM (cross section)

Characterization of mechanical properties of CAPA by **T-RTM** method

< Comparison of mechanical property of composites with 1wt% of CNT>

No.	Tensile strength (MPa)	Material	Reference
1	61.3	CNT _{aerogel} /PA6	This work
2	20	CNT/PA6	Materials Chemistry and Physics 117 (2009) 313–320
3	25	CNT/PA6	CompositesScienceandTechnology72(2 012)1918–1923
4	40.3	CNT/PA6	Macromolecules 2004, 37, 7214-7222

- Slow annealing in oil bath and unpolymerized PA6 with dipping process led to two T_m peaks.
- Two T_c peaks of CAPA by both method occurred because CNT acts as a nucleation agent for forming crystalline structure of PA6.
- The FE-SEM images of composite were characterized for comparing morphology by different process.
- Nanocomposite using dipping process has many void while homogeneous and uniform surface was observed with T-RTM process. This is because T-RTM method uses vacuum pressure which is stronger than dipping.

5	32.6	CNT/PA6	Journal of Polymer Research 18 (2011): 2055-2060
6	13.60	CNT&GO _{aerogel} /PS	Composites Science and Technology 195 (2020) 108191
7	2.3	CNT _{aerogel} /PDMS	Composites Part A: Applied Science and Manufacturing, 90, 678-686.
8	57.3	CNT-OH/PA6	Composites Research 32.6 (2019): 375- 381.
9	51.5	CNT-COOH/PA6	Macromolecules 37.2 (2004): 256-259.

Conclusion

- In this study, We successfully obtained PA6 impregnated CNT aerogel composites through reactive in-situ polymerization by dipping and T-RTM methods.
- Crystallite size of neat PA6 and CAPA was measured by Scherrer equation, which was indicated that stereoscopic structure of CA do not restrict to polymerize.
- DSC results showed thermal properties of neat PA6 and CAPA. There were two peaks of T_m and T_c whose mechanisms were revealed.
- The FE-SEM images of CAPAs showed that the difference between two processes, indicating that T-RTM was better way to fabricate CAPA than dipping.
- 5. It was indicated that mechanical performance of CAPA is much better than other composites which used CNT nanoparticles as usual.

Acknowledgement

This work was supported by the Industrial Strategic Technology Development Program (20017530) funded by the Ministry of Trade, Industry and Energy (MOTIE) of Korea.; National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (2022M3H4A1A04076372).