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Structural weight can be reduced by substituting conventional monolithic components with sandwich ones. Our work aims to optimise the
mechanical properties of lattice cores, which can be manufactured through conventional 3D printing techniques. The topology of the lattice
unit cell Is crucial for the ensuing mechanical performance. Here, we aim to maximise the specific compressive (E2) and out-of-plane
shear stiffness (G23) of lattice cores using a multi-objective genetic algorithm (GA). A Representative Volume Element (RVE) for
parametric lattice designs iIs used In a finite element (FE) modelling framework, which is incorporated within a GA-driven optimisation loop.
Manufacturing constraints are accounted for in the optimisation. Arelative density constraint for the lattice design Is also considered.
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Conclusions

Tapering the struts has a beneficial effect on both compressive and out-of-plane shear stiffnesses, which can be increased up to 11% and 5%, respectively. The
optimum tapering ratio 8 ~ 0.7 is independent of the YRVE and relative density, with an optimum a factor at ~ 0.82.

Future work

Investigate the dynamic properties of the optimum lattice structures through numerical predictions and experimental validation with vibration transmissibility
tests.
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