EFFECTS OF FREEZE-THAW CYCLES ON FRACTURE TOUGHNESS OF ADHESIVELY BONDED CFRP JOINTS K. Kitagawa¹, S. Oshima¹, T. Takeda², H. Kumazawa², and K. Kitazono¹

¹Tokyo Metropolitan University, Japan, ²Japan Aerospace Exploration Agency, Japan

1. Introduction

Carbon fiber reinforced plastics (CFRP) tanks bring many advantages for liquid hydrogen storage.

Advantages of using CFRP cryogenic tank

- Lightweight compared to metals
- Passive utilization of anisotropy in design
- Low thermal conductivity to prevent boil-off

Understanding of properties in adhesive parts (e.g., cylinder/boss part) is important considering various factors including environmental effects.

Hydrogen-powered aircraft

2. Experimental procedure

Test materials and specimens

- Specimens for weight change
- Materials: AF163-2M ($12.5 \times 12.5 \times t1.2$ mm)
- Tensile test specimens of bulk adhesive
- Materials: AF163-2M ($90 \times 10 \times t1.2$ mm)

Double cantilever beam (DCB) specimens

- Adhesive: Structural epoxy adhesive film (AF163-2M, 3M Company)
- Adherends: Unidirectional CFRP (T700S/2592, Toray Industries, Inc.)
- Stacking sequence of the laminates: $[0]_{30}$
- Surface treatment: Sanding
- Initial delamination: 13 µm thick polymer film

Refueling: Freezing Maintenance: Thawing

(resin) CFRP cryogenic tank

- Effects of freeze-thaw (FT) cycles must be taken into consideration.
- Repeated FT cycles may trigger damage of adhesive resin due to volumetric expansion of water molecules²⁾.
- Correlation between fracture mechanisms and mechanical properties of adhesive joints are not fully understood.

Objectives

- Elucidating the effects of FT cycles on fracture toughness of adhesively **bonded CFRP joints**
- Mode I fracture toughness tests on moisture-absorbing adhesively bonded CFRP joints after FT cycles
- Tensile tests of bulk adhesive for correlating the property changes of adhesively bonded CFRP joints
- Fracture surface observations of DCB specimens
- 1) https://www.airbus.com/en/innovation/zero-emission/hydrogen/zeroe, 2) S.K. Mital, et al., NASA/TM, 2006-214346 (2006).

3. Results and discussion

• Weight change of bulk adhesive

Control

Procedure for moisture absorption (MA)

Maintained for 30 days (720 h) at 60 °C and 95% RH in environmental chamber

Freeze-thaw (FT) cycles

- Exposed to 75 FT cycles using environmental chamber
- FT cycles consisting of freezing at -50 °C and thawing at 25 °C

Test environment

Two temperatures were chosen to consider operating environment (room temperature (RT), -50 °C).

DCB specimen

Mode I fracture toughness

<u><u></u><u></u>-30</u> -40 12 16 **Environmental chamber** Time h SH-662, ESPEC

Name of specimens	MA (720 h)	75 FT cycles
Control		
MA	\checkmark	
MA + FT	\checkmark	\checkmark

- Fracture toughness decreased due to moisture absorption.
- Fracture toughness of MA specimens reflected bulk adhesive properties (decrease

Water possibly evaporated during the FT cycles.

Tensile tests of bulk adhesive

- Ultimate stress decreased due to moisture absorption.
- The effect of plasticization by water molecules was observed³).
- FT cycles on MA resulted in a slight increase in ultimate stress.
- **Evaporation of water during FT** cycles was possibly caused.
- Ultimate stress increased but maximum strain at failure decreased significantly from RT to -50 °C.
- Changes in bulk adhesive properties at low temperature were observed.

in ultimate stress).

- Further decrease in fracture toughness occurred due to FT cycles although increase in ultimate stress and maximum strain at failure were observed in bulk adhesive.
- Unlike bulk adhesive, the effects may be irreversible in adhesively bonded joints.
- Fracture toughness decreased at -50 °C. **Decrease in the maximum strain of bulk** adhesive at -50 °C was well reflected.

• Fracture surface observations of DCB specimens

Combined effects of MA and FT cycles on mechanical properties of bulk adhesive

3) K. Kishimoto, et al., ASME, Applied Mechanics Division 187, pp.11–16 (1994).

The effects of FT cycles were due to changes in properties at molecular scale.

4. Conclusions

Mode I fracture toughness tests were conducted to investigate the effect of FT cycles on the mechanical properties of MA adhesively bonded CFRP joints. In addition, the results were correlated with bulk adhesive properties and fracture surface observations. The findings can be summarized as follows.

- Fracture toughness decreased owing to moisture absorption, and further decreased after FT cycles.
- Fracture toughness decreased for all conditions at -50 °C compared to RT results.
- Fracture surfaces remained unchanged after MA and FT cycles.

This work was partly supported by a grant-in-aid for research from the Faculty of Systems Design, Tokyo Metropolitan University.