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METHODS   

Finite Element (FE) simulations play an increasingly important role in the
development and optimization of manufacturing processes. They enable a reduction
of trial-and-error experiments in the development phase, saving costs and time.
However, especially for fiber reinforced composites, FE simulations can take a
considerable amount of computation time [1]. A promising approach to address this
issue is to approximate the process behavior, using computationally inexpensive,
artificial-intelligence-based surrogate models. They can predict the outcome for a
given input accurately, if the model was trained with sufficient training data.
However, a common issue for this approach is the lack of training data.

Therefore, this study focuses on the efficient generation of training data for a
surrogate model, using FE analysis. Towards this goal, we developed an automated
routine for data generation (including pre-processing, solving and post-processing of
a parametrized FE model using Python scripts). To evaluate the suitability of the FE
results as training data, we trained a U-Net based surrogate model (see [2]). The
resulting surrogate model predictions were compared with the respective simulation
results. Additionally, we determined the minimum amount of training data
necessary for the surrogate model to predict results correctly, by conducting a
parametric study with varying training set sizes.

The FE draping process model was created using the commercial software package
Abaqus/CAE. For the draping process, a fabric blank cut is draped onto a rib tool (see
Fig. 1a). The blank cut is held and manipulated using six springs which are attached
to it with clamps (see Fig. 1b). The draping is a one-step process in which the springs 
lower onto the tool and uniform pressure is applied on the blank cut top surface, 
mimicking diaphragm forming.
 

The FE model was parametrized using a Python script, to enable a parameter study. 
Two different training data sets were created: pressure magnitudes and patch size. For 
the pressure magnitudes data set, the blank cut was divided into three patches A1, 
A2, A3, onto which different combinations of pressures (varying from 0.01 to 0.11 
N/mm2 in steps of 0.02 N/mm2) were applied (see Fig. 2 top). For the patch size data 
set, pressures were kept constant (F1 = F3 = 0.05 N/mm2, F2 = 0.01 N/mm2), while 
the patch sizes were varied by moving the division lines along the y-direction (see 
Fig. 2 bottom).

For training, the stresses S11 in local 1-direction and the COPEN parameter 
(indicating the distance between tool and lamina nodes) were evaluated. The 
pressure magnitudes and the output variables were encoded as single-channel color 
values on the blank cut top surface. The encoded images were fed into the U-Net.

The parametric study was conducted using the pressure magnitudes training data set. 
Therefor, the following training setup was used for 20 different seeds:

1. Perform a (seeded) random 80/20  train/validation split

2. Train a new model on a subset of training the set (2%, 4%, 8%, 16%, 32%, 64% 
and 100% of the training data respectively)

3. Evaluate the trained model on the complete validation set using the 2-norm 
between FE results and surrogate model prediction

This procedure enables an estimation of the amount of training data necessary to 
achieve a sufficient performance.

OBJECTIVE  

Suitability of training data. Using 4 CPUs of an Intel Core i7-8665U (1.90 GHz /
2.11 GHz) processor, one simulation run took about 3.2 minutes (simulation time:
2.9 min, export of output: 0.3 min). The pressure magnitudes data set (containing 216
simulations) was therefore created within about 11.5 hours and the patch size data
set (containing 198 simulations) was created in about 10.5 hours. The resulting
COPEN FE result and respective U-Net prediction for an exemplary patch division is
shown in Fig. 3. Comparing the results qualitatively, only slight deviations can be
observed. The shown result is representative for all results of the patch size and
pressure magnitude data set. Thus, using 100% of the training data, the U-Net model
was able to predict the COPEN values quite well for both data sets.

Parametric study. The COPEN values predicted by the surrogate model for an
exemplary load case of the pressure magnitude data set are shown in Fig. 4 (for
subsets containing 2% and 16% of the training data). The surrogate model trained
on the 2% subset predicts no variation within the individual lamina areas, which
severely deviates from the FE result (see Fig. 4d). A 16% subset, however, already
leads to a quite accurate prediction (deviations only occur at the fringes of areas that
are not in contact, as well as at two small areas (see Fig. 4d)).

Minimum required training data. Fig. 5 shows the average (over all seeds) difference
of the COPEN and S11 images for different training set sizes of the pressure
magnitude data set. With increasing training set size, the average difference between
FE and U-Net result is decreasing for both output variables. Due to less variability
within the S11 values, the trend is more distinct for the COPEN values, and S11 values
can already be predicted quite accurately with 2% of training data. A minimum of
16% of training data (i.e., 35 out of 216 simulations) is necessary for an accurate
prediction of the COPEN values.

The evaluation of the COPEN data showed that the generated FE training data is well
suited for simple U-Net surrogate models. Further investigations will focus on more
advanced machine learning models to expand the capabilities of the model.
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Fig. 3: (a) Exemplary patch division and respective COPEN values resulting from (b) FE simulation and (c) surrogate model

Fig. 5: Average 2-norm values of the COPEN (blue) and S11 images (orange) for different training set sizes of pressure magnitudes

Fig. 1: (a) Isometric view of the draping simulation model, (b) blank cut with clamping areas (denoted with C) 
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Fig. 2: Variations of the model parameters for creating the pressure magnitudes (top) and patch size (bottom) data set  

A1
A2

A3

...

Iteration 1      Iteration 2 

F1

F2

F3

Iteration 1      Iteration 2 

...

Pressure magnitudes

Patch size

(a)   (b)   (c)   (d)

Fig. 4: (a) Exemplary patch division, the respective COPEN values resulting from the (b) FE simulation and (c) surrogate model 
prediction and (d) difference between FE und surrogate model result for 2% and 16% of the training data
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