# Strengthening Mechanism of Silicon Carbide Green Body via **Cellulose Nanofiber Addition**

Teruyoshi KANNO, Hiroki KURITA, and Fumio NARITA

Department of Frontier Sciences and Advanced Environment, Graduate School of Environmental Studies, Tohoku University, JAPAN

# 1. Introduction

### **Robocasting for ceramics**



#### ABSTRACT

This study has reported the enhancement of a SiC green body by CNF slurry addition to the SiC slurry for robocasting. Three-point flexural strength of the green body containing CNF was about 1.5 times higher than that without CNF. The enhancement was caused by an increase in the number of hydrogen-bonding site. On the other hand, the strengthening mechanism changed to an increase in the number of nonpolar groups site after annealing.

### Reinforcement

Cellulose nanofiber (CNF) aqueous slurry



#### Ceramic slurry

- Shear thinning Yield stress
- Robocasting requires the slurry which shows Bingham-pseudoplastic behavior.

#### Ceramic green body

Low strength 

Brittleness

The green body can easily collapse by shocks. (ex. Transportation from a modeling stage to a furnace)

# 2. Methods, Results and Discussion

### Raw materials

- Silicon Carbide (SiC) powder (solid loading of 40 vol%)
- Boron carbide and Carbon powders (sintering additives)
- Water and 2 wt.% commercial CNF aqueous slurry (dispersion medium)
- Anionic dispersant

#### Specimens

- Different weight ratio (water-to-CNF slurry) in the dispersion media (100:0 and 80:20)
- Room temperature (RT) drying for a day.
- Annealing at 250  $^{\circ}$  or 500  $^{\circ}$  to investigate the strengthening mechanism.

- shows **Bingham-pseudoplastic behavior**.
- forms **rigid CNF sheet** after drying at room temperature through hydrogen-bonding.
- Desorption of bound water begins at 250 ℃, and pyrolysis occurs at more than  $300^{\circ}$  drastically.

# **Objectives**

- 1. Enhancement of the green body by the CNF addition.
- 2. Proposing a mechanism of the enhancement by the CNF addition.

## Flexural strength of green bodies



Evaluation

- Three-point flexural test. (crosshead speed of 0.5 mm/min, support span of 30 mm)
- Three-point flexural test after heat treatment.
- Microstructural observation of the green bodies and CNF.

$$\sigma_{500}^0 > \sigma_{\mathrm{RT}}^0, \qquad \sigma_{500}^{0.2} > \sigma_{RT}^{0.2}$$

The strength depended on the effect of

## **Microstructure of green body and CNF**



### **Proposed strengthening mechanism by CNF addition**



#### **CNF** generated bonding sites between CNF and particles.

- CNF sheet had dense fiber network structure.
- **CNF** network structure disappeared after annealing.
- Only the thick CNF bundle remained.
- **D** Almost no difference in microstructure was observed between CNFs annealing at 250 °C and 500 °C.



#### (Room temperature)

CNF strengthens SiC green body by increasing the number of bonding sites through hydrogen-bonding. (250 °C)

CNF does not contribute to the matrix strength due to the loss of bound water.

#### (500 °C)

- □ The partially-oxidized SiC particle surface is cleaned. Besides, non-polar groups (Si–C) are exposed<sup>[2]</sup>.
- □ The residual pyrolyzed fiber bundle increases the number of bonding sites through van der Waals force.

Acknowledgement: JSPS KAKENHI (grant number: JP22J20100)

[1] T. Kanno et al., Int J Adv Manuf Technol, 125, pp.2055-2064 (2023). [2] H. Kamiya et al., *Powder Technol*, 127, pp.239-245 (2002).