🔎 Conclusions

100

150

Time / s

200

250

Transfer of the flame retardancy and post-fire mechanics from polymer materials to glass-fiber-reinforced plastics

Maria Jauregui Rozo¹, Sruthi Sunder², Holger Ruckdäschel², Bernhard Schartel¹

¹Bundesanstalt für Materialforschung und –prüfung (BAM), Unter den Eichen 87, 12205 Berlin, bernhard.schartel@bam.de; maria.jauregui@bam.de

²Department of Polymer Engineering, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.

DGEBA DER 331

H₃C CH

Ammonium

polyphosphate (APP)

Motivation and Aim

Results

100

80

40

20

0

1500

1000

500

HRR / kW/m²

200

Mass / %

More knowledge is needed about flame protection more specifically, the fire resistance and flammability of fiber-reinforced polymeric systems and their fire resistance under mechanical stress. Furthermore, little is known about the mechanical properties and changes during and after a fire of these types of materials.

This project thus aims to understand the modes of action in flame retardancy and post-fire mechanics of phosphorus based flame-retardant polymer materials in fiber-reinforced composites and to compare them with pure epoxy resins.

Pyrolysis – Thermogravimetric Analysis (TGA)

400

Fire Behavior - Cone Calorimeter

Temperature / °C

600

800

ilicate + 8% APP + UD-G ilicate + 8% APP + BD-G

300

350

norganic silicate + 8% APP + UD-G vorganic silicate + 8% APP + RD-G

Flammability Limiting Oxygen Index (LOI) DGEBA DGEBA DER331 DGEBA DER331 + GF-UD Sample **DER331** + GF-BD OI / vol.-% (± 0.2) **DGEBA** 21.1 33.0 30.9 1 DGEBA + 2%InSi + 8%APP 2 25.7 47.1 36.3 **UL-94** DGEBA DER331 DGEBA DER331+GF-UD DGEBA DER331+GF-BD Burning Sample rate (n Classificatio rate (mm Classificati rate (m min) min) DGEBA HB40 16 ± 4 HB40 0 HB40 0 DGEBA + 2 2%InSi+ VO HB40 0 HB40 0

ΘÒ

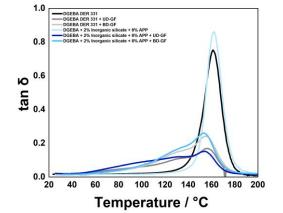
⊕NH₃

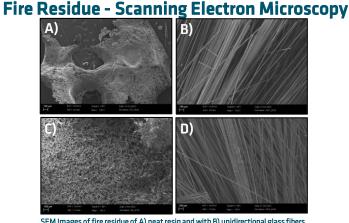
Melamine

Fire Residue – Macroscopic Appearance D) Fire residue of flame retardant formulations A) in the neat resin and with B) unidirectional and C)

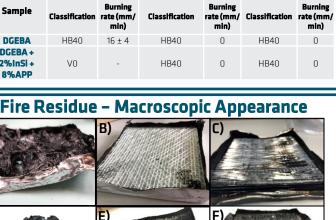
NH

0/90°

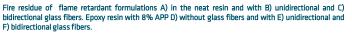

580 g/m² 0/90°

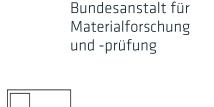

DICYANDIAMIDE

 NH_2


 H_2N


Dynamic Mechanical Analysis (DMA)





SEM Images of fire residue of A) neat resin and with B) unidirectional glass fibers. Epoxy with 8% APP C) without glass fibers and with D) unidirectional glass fibers

UNIVERSITÄT

BAYREUTH

Pyrolysis

- The amount of residue increases when resins are transferred to glass fiber composites.
- When transferred to glass fiber composites, $T_{5\%}$ increases and T_{max} decreases.

Flammability

- When transferred to glass fiber composites, the LOI value increase significantly.
- The addition of flame retardants decreases the burning rate.

Fire Behavior

- The HRR, THR, and PHRR decrease when the resins are transferred to glass fiber composites.
- In addition, the modes of action in gas and condensed phase, decrease significantly.

Dynamic Mechanical Analysis

The height of the tan ∂ curve decreases as follows: neat resin >> BD GF composite > UD GF composite indicating lower segmental mobility due to the glass fibers and good interfacial adhesion between the resin and fibers.

Conclusions

- The mobility of the polymer chains is negligibly affected when FRs are added for the neat resin and composites.
- The value of Tg (peak of the tan ∂ curve) is around ٠ 160°C and the presence of the glass fibers only causes a slight decrease in this value.
- When the glass fibers are added, there is a change in the modes of action of flame retardancy.
- There is an increase in intumescence and charring when the FRs are added. When glass fibers are added the charring and intumescence diminishes.

Sicherheit in Technik und Chemie

This project is financed by the DFG (Deutsche Forschungsgemeinschaft) (DFG SCHA730/26-1 and Acknowledgements DFG AL 474/53-1). The authors thank Prof. V. Altstädt for his contribution to the research concept.

www.bam.de