DRAPABILITY EVALUATION OF ADHESIVE-BONDED NCF BY MEANS OF LOW-FIDELITY SIMULATION
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Forming simulation 1s a major part of process simulation for composite materials, as the occurrence of draping defects can significantly impact the mechanical properties as well as manufacturing properties of the part. The forming
behaviour of dry fabrics has been studied extensively, with woven fabrics being in the focus. Non-crimp fabrics (NCF) are studied increasingly by now as the overall achievable mechanical properties and degree of tailoring are superior to
woven fabrics. Focus has been laid on stitched-NCF, nonetheless the binding of layers can also be realized by adhesive binding techniques, applying thermoplastic adhesive webs or epoxy powder. Since this binding strategy underlies a
different physical principal, the forming behaviour of adhesive bindered NCF 1s differing from the ones of woven or stitched NCF, which has not been described extensively yet. Aim of this study 1s to apply standard tests that are
established for drapability characterization to chemically bindered NCEF, to give a general description of the forming behaviour. Secondly the gained knowledge and mechanical characterisation will be used to simulate the draw-1n behaviour
of a four-layered adhesively bonded NCF. The simulation will be compared to experimental tests.
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3. Experimental characterization results 4. Draw-In Simulation

3.1 Characterization of bending stiffness | E1[GPa] | E;[GPa] | Gy, [MPa] V12
0 Binder amount/pressure | [0/0/0/0] | [0/90/90/0] | [90/0/0/90] [ 121 121 2,8 0,22
13 COS (7) Material parameters for [0/90]s
G [Nmm] = w= =) = [1] 6g/m?, 34hPa 14600£1700 3300100 4000£500
8 tan(@) |
N4 \ 4 6g/m?, 67hPa 13700+1200 3700+300 4300+200
;s (P cos(6) 6g/m?, 950hPa 1330041100 51005800  5400+600
G [Nmm] =15 * 3L + 0,13 *x w | * 5 [2]
2 12g/m?, 34hPa 177001600 3400100 3500+500
g:free);?rvileﬁtdé}yfgnnf%]\} - 12g/m?, 67hPa 17800£1000 37004300 3600200
0 — Inclination angle of plate [rad] 12g/m?, 950hPa 2510043200 7600+1200 8300+1300

P — additional weight added at free end of fabric [N/mm)]
[, - free sample length [mm)]
[, - projected length [mm)]

Measured flexural rigidity in m/Nmm for fabric samples with varying stack-up, binder
amount and consolidation pressure

* Significant influence of binder amount for unidirectional stack
* Influence not significant for orthotropic stack-up
Flexural rigidity by tendency higher for [90/0]s than [0/90]s
* Larger bonded surface of inner 0°-plies for [90/0]s
Insignificant difference 1n flexural rigidity for lower

* Investigation of influence of:
* stacking-sequence; [0/0/0/0], [0/90/90/0], [90/0/0/90]
* Binder amount: 6 g/m? and 12 g/m?
* Consolidation pressure: 34hPa, 67hPa, 950hPa
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3.2 Characterization of shearing behavior
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