

MANUFACTURING AND AGING OF TOUGH EPOXY COMPOSITE MATRICES

D. Carolan, D. Incerti, C. Rouge and A. Fergusson

FAC Technology, 53 Lydden Grove, London, SW18 4LW, United Kingdom

INTRODUCTION

Tough epoxy polymers that don't crack are useful

Technology of toughening epoxy polymers is widespread

Rubber

Silica

Nano-carbon

Commercial drivers: Reduce mould time, Manufacture faster

Question 1:

Is a composite matrix resin cured at high speed as tough as one cured at low speed?

In-house formulation resin

In-house formulation hardener

Question 2:

Is a toughened composite as tough after aging as when it was manufactured?

Toughened with a polysiloxane core shell rubber (CSR) nanoparticle

Cured at different temperatures, hotter = faster cure

increase in toughness

Thermal aging reduces free volume

Fracture energy decreases with aging time

epoxy polymer

Answer 1: No

CONCLUSIONS

The toughness of rubber-toughened epoxies is **significantly**

adversely affected by cure rate

Matrix formulations should be chosen by considering **speed of cure** as a commercial driver

Thermal rejuvenation demonstrates recovery of fracture energy lost via thermal aging

Answer 2: No

Physical aging **negatively** affects the toughness of rubber modified epoxy polymers

The effects of physical aging on toughened epoxy polymers are **recoverable**