Modeling of Damage and Residual Load-Bearing **Capacity of Non-Crimp Fabric Composites**

Background

Material: Unidirectional Non-Crimp Carbon Fabrics (NCF). Advantage: combination of high mechanical properties and excellent manufacturability. **Applications**: load-bearing aerospace structures,

automotive parts, and wind energy components. **Structure**: multiple straight and parallel yarn bands joined by polyester stitching (binder).

Problem: in-service damage can be a cause for severe reduction in load-carrying capacity of NCF composites. **Numerical modeling** can provide cost-efficient solution for accessing damage and post-impact (residual) load-carrying capacity of NCF parts, as well as accelerated decision making. **Goal of this study**: Evaluate the applicability of the <u>commonly</u> <u>used</u> composite material model available in LS-DYNA (MAT54) for predicting damage and residual load bearing capacity in structural elements made of NCF.

g/m², resin content – $38\pm3\%$.

Property	Units	Value	Method	
Longitudinal Young's modulus, ${f E_1}$	MPa	149018	ASTM D 3039	
Transverse Young's modulus, E ₂	MPa	6071		
Major in-plane Poisson's ratio, $ u_{12}$	-	0.32		
In-plane shear modulus, ${f G_{12}}$	MPa	4217	10° off-axis	
Longitudinal tensile strength, X_t	MPa	2060	ASTM D 3039	
Longitudinal compressive strength*, \mathbf{X}_{c}	MPa	814	Modified ASTM D695	
Transverse tensile strength, Y _t	MPa	29.1	ASTM D 3039	
alcTransverse compressive strength*, $\mathbf{Y}_{\mathbf{c}}$	MPa	121	Modified ASTM D695	
In-plane shear strength, $\mathbf{S_L}$	MPa	44.5	10° off-axis	
Longitudinal tensile strain-at-failure, ϵ_{1f}	%	1.37	ASTM D 3039	
Transverse tensile strain-at-failure, ϵ_{2f}	%	0.40	ASTM D 3039	
In-plane shear strain-at-failure, γ_{12f}	%	1.71	10° off-axis	
Longitudinal compressive strain-at-failure, ϵ_{1f}	%	0.55	Modified ASTM D695	
Transverse compressive strain-at-failure, ϵ_{2f}	%	1.99	Modified ASTM D695	
Mode I strain energy release rate, G _{Ic}	kJ/m ²	0.66	ASTM 5528b	
Mode II strain energy release rate, G _{IIc}	kJ/m ²	2.77	ENF bending	

YCFAC Reduction factor for compressive fiber strength Xc after matrix compressive failure

M. Kazemian, Ph.D. Candidate A. Cherniaev, Ph.D. P.Eng., Assoc. Prof. Department of Mechanical, Automotive and Materials

Engineering, University of Windsor, Ontario, Canada

					VCEAC
4		SLIIVI 12		SLIIVICZ	
1	0.01	0.01	0.1	0.1	6.72
2	0.01	0.01	0.1	1	2
3	0.01	0.01	1	0.1	2
4	0.01	0.01	1	1	6.72
5	0.01	0.1	0.1	0.1	2
6	0.01	0.1	0.1	1	6.72
7	0.01	0.1	1	0.1	6.72
8	0.01	0.1	1	1	2
9	0.1	0.01	0.1	0.1	2
10	0.1	0.01	0.1	1	6.72
11	0.1	0.01	1	0.1	6.72
12	0.1	0.01	1	1	2
13	0.1	0.1	0.1	0.1	6.72
14	0.1	0.1	0.1	1	2
15	0.1	0.1	1	0.1	2
16	0.1	0.1	1	1	6.72
17	0.01	0.045	0.45	0.45	4.36
18	0.1	0.045	0.45	0.45	4.36
19	0.045	0.01	0.45	0.45	4.36
20	0.045	0.1	0.45	0.45	4.36
21	0.045	0.045	0.1	0.45	4.36
22	0.045	0.045	1	0.45	4.36
23	0.045	0.045	0.45	0.1	4.36
24	0.045	0.045	0.45	1	4.36
25	0.045	0.045	0.45	0.45	2
26	0.045	0.045	0.45	0.45	6.72
27	0.045	0.045	0.45	0.45	4.36