High-temperature Performance SiC-HfC Nanocomposite Fiber Derived from Modified Polycarbosilane

*Seong-Gun Bae^{1†}, Yoonjoo Lee², and Dong-Geun Shin^{1†}

¹Aerospace & Convergence Materials Center, Korea Institute of Ceramic Engineering & Technology, Jinju 52851, Republic of Korea ²Semiconductor Materials Center, Korea Institute of Ceramic Engineering & Technology, Jinju 52851, Republic of Korea [†] Corresponding author: sg0329@kicet.re.kr, dgshin73@kicet.re.kr

Introduction

✓ Polycarbosilane

✓ Microstructure of SiC-HfC Nanocomposite fiber

✓ Expected effect of hafnium carbide

✓ Carbon control by intermediate oxidation

Experiment / Results & Discussion

(BSE) mode

Samples	Phase analysis	Crystallite size, D (nm) SiC (111)	Crystallite size, D (nm) HfC (111)	I _D ∕I _G
SiC-HfC1	Carbon 3C-SiC HfC	21.4	18.2	0.63
SiC-HfC2	3C-SiC HfC	23.8	22.3	0.39
SiC-HfC3	3C-SiC HfC	93.2	48.8	1.28

France) operating condition λ =532nm, 400~2000cm⁻¹

AI-Hf modified polycarbosilane

Crystal structure analysis

✓ High-Resolution Transmittance Electron Microscopy

Mechanical & Creep properties

✓ Bend Stress Relaxation test

Binding energy [eV]	0	03 102 101 100 Binding energy [eV]	99 98 104	103 102 101 10 Binding enegy [eV	0 99 98]	0 104 103 102 101 100 9 Binding energy [eV]
	Samplac			XPS [at	t%]	
• XPS (NEXAS Themo	Samples	C 1s	Si 2p	Al 2p	Hf 4f	C/Si ratio
Fisher Scientific, USA)	SiC-HfC1	64.2	32.3	2.9	0.6	1.9
operating condition :	SiC-HfC2	51.0	44.0	4.0	0.9	1.2
50.0eV, 5~30scan, 400µm spot size	SiC-HfC3	50.4	44.9	3.7	0.9	1.1
Peak distribution: Pseude	o-Voigt fun	ction				

• Cs-Corrected TEM (Titan ThemisZ, Themo Fisher Scientific, USA) operating condition : Accel. Voltage 10.0kV, High Voltage 300kV • Red line : Fast Fourier transferred (FFT) image and d-spacing calculation; HfC $d_{(111)}$ =0.27 • Blue line : FFT image and d-spacing calculation; SiC $d_{(111)}=0.25$

Tensile strength [GPa]	2.15 ± 0.22	2.34 ± 0.14	1.70 ± 0.10
Tensile modulus [GPa]	347.58 ± 30.03	344.49 ± 18.97	378.83 ± 25.92
Tensile strength after oxidation [GPa]	1.24 ± 0.27	1.45 ± 0.22	1.57 ± 0.17
Creep resistance in Ar ^a [°C]	1200	1350	1500
Creep resistance in Air ^a [°C]	< 1000	< 1000	1300

^aCreep resistance : Stress relaxation parameter [m] <0.8

Bend stress relaxation test

operating condition : graphite mold / Ar / 1hour each temperature, R_0 =8mm

Conclusion

✓ The polycrystalline silicon carbide – hafnium carbide nanocomposite fibers were fabricated by polymer derived ceramics (PDCs)

method using aluminum, hafnium acetylacetonate modified polycarboisilane

✓ During the intermediate oxidation heat-treatment, the excess carbon was eliminated via reaction with oxygen up to 3.2wt%

✓ As removing excess carbon, high crystallinity SiC-HfC nanocomposite fiber could be fabricated at the same sintering temperature of 1800°C

✓ Near-stoichiometric SiC-HfC nanocomposite fiber (C/Si ratio=1.1) which a lot of removing carbon shows the highest creep & oxidation resistance. however, The RT tensile strength exhibits the lowest as a result of coarsened silicon carbide grain structure.

Reference

[1] Dong-geun Shin, et al. *Key Eng Mater* 2005, 287, 91.

[2] Yoonjoo Lee, et al. *Compos Res.* 30.2.102, (2017)

[3] Seokhun Jang, et al. Ceramics International 46.5 (2020): 5602-5609.

[4] Seong-Gun Bae, et al. Ceramics International 48.9 (2022): 13295-13303.

[5] Seong-Gun Bae et al. J. European Ceram. SoC (2023): 1385-1396