Market driven materials selection & characterization of thermoplastic flexible riser pipelines used in offshore and subsea applications

<u>C.I. Bachour</u>^{1,2,3*}, R.M. O'Higgins⁵, N.M. Harrison^{1,2,3,4}, R. Allen⁶, T. Flanagan⁶

¹ Mechanical Engineering, University of Galway, Ireland; ² Ryan Institute for Environmental, Marine and Energy Research, University of Galway, Ireland; ³ IComp Irish Composites Centre, Ireland;

⁴ I-Form, the SFI Centre for Advanced Manufacturing, Ireland; ⁵ School of Engineering and Bernal Institute, University of Limerick, Ireland; ⁶ ÉireComposites Teo, An Choill Rua, H91Y923 Indreabhán, Ireland

*carlos.bachour@universityofgalway.ie

Background

- The most economic oil & gas transportation method rely on pipelines. Thermoplastic Composite Pipelines (TCPs) have emerged as a competitive and recyclable option against metallic pipes for off-shore Carbon Capture and Storage or sequestration (CCS) applications, where CO₂ needs to be transported in supercritical state (over 73 bar and 31°C) to secure geologic sites such as depleted sub-sea oil or gas fields¹.
- To have a chance of finding an alternative cost-competitive TCP solution to TCPs currently rendering service a market driven material selection is needed.
- This work navigates the Technology Readiness level (TRL) scale all the way from TRL1 to TRL5 going through materials selection, manufacturing and proof of concept testing for TCPs compatible with CCS applications manufactured by scalable cylindrical composite manufacturing methods, such as Automated Tape Placement (ATP).

Objectives

- To explore cost-effective TCP alternatives for commercial CCS applications.
- To manufacture and test a TCP proof of concept to assess potential commercialization.

Making profit out of not polluting the environment with CO₂ emissions is

possible!

Materials Combination + ATP manufacturing Tech.

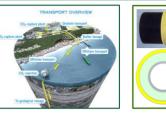
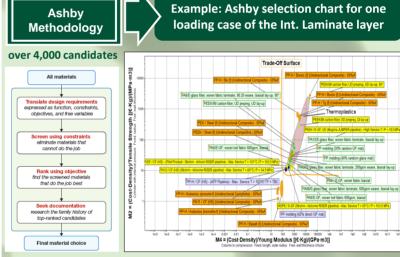



Fig 1. Offshore CO_2 capture, transportation and storage (CCS) transportation concept.² (left), and TCP pipeline schematic (right)

Liner	HDPE			
Int. Laminate	CF/PP			
Cover	PE-100			
Interface	Acrylic Adhesive			

Materials Selection

Results & Conclusions

- A cost-effective alternative to commercial TCPs has been found.
- Further research is needed to enhance linerto-intermediate layer compatibility and avoid the employment of adhesives.

TCP Layer/I	Mission
-------------	---------

Relevant Result

Inner Liner protecting the

HDPE renders the best permeability

CF/PP	Last Bonding Strategy: Acrylic Adhesive 1st Bonding Strategy: Cost-Effective			Materials Selection		intermediate layer from the product being transported	performance after the oil & gas benchmark Polyamide (PA)
	Compatibility Tape	Materials Combination		All materiais		Reinforced Intermediate	CF/PP int. laminate &
		Liner	HDPE	Translate design requirements expressed as function, constraints, objectives, and free variables		Laminate responsible for	PE-100 cover layers
		Int. Laminate	CF/PP	Screen using constraints eliminade materials that	IL	structural integrity	render comparable
		Cover	PE-100	Rank using objective find the screened materials		Outer Cover protecting the	mechanical properties to
		Interface	Acrylic Adhesive	Seek documentation		intermediate layer from	materials employed by leading companies in
	Lack of Adhesion			research the family history of top-arrived annotates Final material choice		the outer environment	the TCP sector

References

- L. V. E. Onyebuchi, A. Kolios, D. P. Hanak, C. Biliyok, and V. Manovic, "A systematic review of key challenges of CO2 transport via pipelines," Renew. Sustain. Energy Rev., vol. 81, no. June 2016, pp. 2563–2583, 2018, doi: 10.1016/j.rser.2017.06.064
- 2. "Global CCS Institute: Carbon capture and storage images." https://www.globalccsinstitute.com/resources/ccs-image-library/ (accessed Mar. 24, 2021).
- 3. "GRANTA EduPack Software." https://www.ansys.com/products/materials/granta-edupack/ (accessed Oct. 05, 2022).
- 4. Michael F. Ashby, Materials selection in mechanical design, 4th Editio., vol. 16. Elsevier Ltd, 2014.

