Materials Informatics Approach to Predictive Models for Elastic Modulus of Polypropylene Composites

Y. Araki, Y. Ikeda, M. Okuyama, Y. Nakazawa, T. Oshiyama and K. Funatsu KONICA MINOLTA, Inc., Hachioji, Tokyo, Japan Department of Chemical System Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan Nara Institute of Science and Technology, Ikoma, Nara, Japan

Keywords : polypropylene composite, machine learning, elastic property

J. Comput. Chem. Jpn. Int. Ed. **7**:2020–0007 (2021).

Machine

Purpose

To establish a machine learning method to predict target properties by using only categorical information

Information about brand names Base polymer : *m*₁, *m*₂, *m*₃, ... **Additive** : *a*₁, *a*₂, *a*₃, ...,

Target Property Ex. Elastic modulus, etc...

Method

<u>1. Featurizing formulation of composites</u>

Experimental setting in this research				
Target Property	Control Parameter			
Electic Medulue	PP	Additive	Filler	
	11 17	20		

	Recipe of a composite			
Component	PP	Additive	Filler	
Name	<i>m</i> _i (<i>i</i> = 1-11)	<i>a_j</i> (<i>j</i> = 1-17)	$f_k (k = 1-20)$	
Mass ratio	1	X _{ai}	X _{fk}	

Filler : $f_1, f_2, f_3, ...,$

Representing a recipe by using dummy variables $\gamma \cap$

$$\mathbf{x} = (0, ..., 1, ..., 0, 0, ..., x_{aj}, ..., 0, 0, ..., x_{fk}, ..., 0)$$

We use this **x** as a feature to predict an elastic modulus. The dimension of x: 11 + 17 + 20 = 48.

3. Evaluation & Analysis

- 1. Evaluating constructed PLS model by predicting test data
- 2. Performing actual experiment to check prediction results

3. Analyzing the experimental results comparing the model prediction

Result & Discussion

Material

Component

Ratio

The result of PLS regression for elastic modulus

※ The hyperparameter of PLS was optimized by LOOCV

Additive

*X*₃₁

Filler

*X*₁₆

40

PP

 X_4

55

PLS : Linear regression model

The observed elastic modulus behaves **non-linearly** against x_{16} value.

The constructed model can not predict this data point because of non-linearity for content ratio.

The model with a significant accuracy was constructed.

However, a few data points were outlier (red circle).

