Modelling in-plane electrical behaviour of unidirectional and cross-ply carbon fibre laminates

J. David Acosta-Correa¹, Sheik Abdul Malik², Andrew Hamilton¹ and Meisam Jalalvand¹ ¹ Department of Mechanical Engineering, University of Southampton, Southampton, England, UK. ² Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, Scotland, UK

Results and discussion

Ohm's law resistance prediction

Minimum crack detection using the electrical resistance change method

Criterion for detection: $\Delta R/R_i > 1$ % (based on a typical multimeter)

Unidirectional (UD) laminate

Electric potential distribution [V] for UD and CP laminates.

Electrical resistance $[\Omega]$ for different electrodes and sample widths in UD and CP laminates.

- Ohm's law can predict the 2D electrical resistance for UD, contrary to CP laminates.
- The main current path in UD is in the longitudinal direction and the resistance behaves as a 1D case.
- The current path in CP is in the longitudinal

Electric potential distribution [V] for UD and CP laminates.

- For UD laminates when electrodes have carbon fibres connecting them, the longitudinal resistance non-linearly increases with the electrode width offset. While the transverse resistance linearly increases with the distance between electrodes, when electrodes do not overlap.
- The resistance measurements are similar between
- is similar to the width of the sample (>=97% of width).
- However, a central crack can be detected for cross-ply laminates when its

and transverse direction, 2D, which is not considered in Ohm's law

length is around 27% of the sample width. electrodes with different width offset ratios in CP laminates.

Conclusions

- The results showed that the 2D electrical resistance could be assumed as • a 1D resistance in CFRP UD because the primary conductivity mechanism is through the fibres.
- Ohm's law can predict the 2D in-plane electrical resistance behaviour between two electrodes located anywhere in a UD composite fibre plate. However. Ohm's law was unable to predict electric resistance behaviour of CP laminates.
- In practice, central cracks can be detected in cross-ply laminates but not in unidirectional laminates.

Future work

To investigate the relation between electrical resistance and different location and size of the damage.

Acknowledgments

We thank the Ministerio de Ciencias de Colombia for financing this project and the University of Southampton for providing the resources to attend this conference.

References

[1] X. Qing, W. Li, Y. Wang, and H. Sun, "Piezoelectric transducer-based structural health monitoring for aircraft applications," Sensors (Switzerland), vol. 19, no. 3, pp. 1–27, 2019. [2] J. Wen, Z. Xia, and F. Choy, "Damage detection of carbon fiber reinforced polymer composites via electrical resistance measurement," Compos. Part B Eng., vol. 42, no. 1, pp. 77–86, 2011.

International Conference of Composite Materials, ICCM 23, Belfast .

Contact Jose David Acosta jdac1e20@soton.ac.uk