Fracture Response of an Adhesive-Bonded Thermoplastic Composite at Low Temperature

VATERLOO

<u>M. Zivkovic</u>, E. Shi, J. Montesano

Composites Research Group, Mechanical and Mechatronics Engineering, University of Waterloo, Canada

ICCM23 - August 2, 2023

Agenda

- Background
- Introduction
- Sample Preparation
- Experimental Method
- Experimental Results
- Conclusions

Background – Motivation for Work

- Clean and sustainable energy sources are critical for remote communities
- Micro-generating wind turbines present a viable alternative to diesel generators
- Harsh environments impose a high demand on wind turbine blades

Composites

Research

Group

UNIVERSITY OF

WATERLOO

Roadmap for supporting energy projects and promoting diesel reduction in indigenous communities¹.

Background – Turbine Blade Manufacturing

- Our group has developed a resin infusion process for blade shells
- Resin used is a reactive polymethyl methacrylate (PMMA)
- Turbine blade assembly is composed of two adhesivelybonded composite blade shells
- Thermoplastic composites are more difficult to bond than thermoset composites

Adhesive-bonded micro-generating wind turbine blade.

Introduction – Thermoplastic Adhesives

- Murray et al. successfully bonded thermoplastic composites with methyl methacrylate (MMA) adhesives²
- Thermoplastic adhesive testing with variable temperature has been conducted by Jia et al.³
- To the author's knowledge, low temperature testing of methacrylate adhesive with thermoplastic substrate has not been reported

Composites

Research

Jia et al. demonstrated that temperature has a drastic effect on polyurethane (thermoplastic) adhesive performance at quasi-static loading conditions³. Adhesive used to bond steel substrate.

Objective: Characterizing the temperature and bond-line thickness effect on Mode-I & Mode-II fracture response of a thermoplastic adhesive

Sample Preparation – Substrate

- **Material system**: Elium[®] 188 XO PMMA resin (Arkema) reinforced with glass fiber unidirectional non-crimp fabric (UD-NCF) (SAERTEX[®])
- Substrates underwent abrasion and degreasing surface treatment on mold-side surface prior to bonding
- Substrates bonded with FIT30-45 MMA adhesive (Bostik) with bond-line thicknesses in the range 0.2mm to 1.0mm

Cross-sectional image of thermoplastic fiberglass panel. $[0]_4$ stacking sequence with $\approx 48\%$ FVF.

Sample Preparation – DCB Bonding

DCB specimen schematic⁴.

DCB specimen dimensions.

Shim thickness (mm)	Length <i>L</i> (mm)	Width <i>B</i> (mm)	Bond-line Thickness t _A (mm ±STV)	Pre-Crack; Shim length a _o (mm ±STV)	Total Sample Thickness <i>2h</i> (mm ±STV)	Average Surface Roughness (μm ±STV)
0.25			0.3268 ±0.04905	45.52 ±0.4417	6.008 ±0.08802	
0.635	140	25.4	0.7225 ±0.1247	45.41 ±0.4704	6.348 ±0.06547	0.764 ±0.0469
0.8			0.8073 ±0.07316	45.89 ±0.4164	6.507 ±0.06178	

Sample Preparation – ENF Bonding

ENF specimen dimensions.

Shim thickness (mm)	Mid-Span Length <i>L</i> (mm)	Width <i>B</i> (mm)	Bond-line Thickness t _A (mm ±STV)	Pre-Crack; Shim length a _o (mm ±STV)	Total Sample Thickness <i>2h</i> (mm ±STV)	Average Surface Roughness (μm ±STV)
0.25			0.3041 ±0.04639	51.41 ±0.2635	6.147 ±0.1819	
0.475	75	25.4	0.6052 ±0.02707	52.68 ±0.5493	6.429 ±0.08791	0.764 ±0.0469
0.675			0.7211 ±0.06853	52.46 ±0.3609	6.480 ±0.06961	

Experimental Method – Fixture Setup

Piano hinge fixture setup for DCB testing.

Experimental Method – LT Test Setup

- Samples tested using MTS 810 servohydraulic test frame
- Climate chamber with LN2 canister used for LT tests
- Cooling rate of -6.5°C/minute followed by conditioning for 5 minutes at set temperature of -40°C

LN2 canister used to cool climate chamber for LT tests.

Sample enclosed within climate chamber; crack front still visible through glass with DSLR.

Experimental Results – Mode-I

ICCM23 - August 2, 2023

Experimental Results – Mode-I Fracture Toughness

- Modified Beam Theory (MBT) Method (from ASTM D5528) used to determine mode-I strain energy release rate (G_{IC})⁵ for RT-DCB samples
- LT-DCB *G_{IC}* calculations incomplete due to errors in elastic curve

	Below: G _{IC} calculations	using MBT	method for RT-D	CB specimens.
--	-------------------------------------	-----------	-----------------	---------------

Bond-line Thickness (mm)	G _{ıc} (N/mm)	
0.25	0.929	
0.635	1.231	
0.8	1.632	

Overlay of average Load-Displacement curves for DCB tests at RT and LT.

Numerical Model – Mode-I RT

- RT-DCB experiments simulated in ABAQUS using cohesive elements to determine TSL parameters
- *G_{IC}* from experimental results used as fracture energy input
- Discrepancies in elastic response may be due to process errors during sample bonding

Bilinear traction separation law parameters for ABAQUS simulations.

Bond-line Thickness (mm)	Initial Stiffness (MPa)	Peak Traction (MPa)	Fracture Energy (MPa mm)
0.25	1000	15	0.929
0.635	500	15	1.23
0.8	2000	15	1.63

Fracture Analysis – Mode-I RT

Fracture Analysis – Mode-I LT

Unbonded composite at 500x magnification.

LT fracture ridge at 500x magnification.

Fracture Analysis – Mode-I LT

- LT-DCB samples characterized by oscillatory "groove" patterns (valleys and ridges)
- Residual stresses caused by specimen cooling may have increased crack-path instability (T-stress theory)⁶
- 3D depth display was used to characterize surface roughness for varying adhesive thicknesses

Experimental Results – Mode-II

Experimental Results – Mode-II

- RT and LT *G_{IIC}* calculations incomplete due to challenges observing crack-tip during shear deformation
- Trials using DIC were unsuccessful for Mode-II crack tip tracking

Unsuccessful DIC crack-tip monitoring trial.

Overlay of average Load-Displacement curves for DCB tests at RT and LT.

Fracture Analysis – Mode-II RT

RT-ENF specimens exhibit hackle formulations indicative of shear failure

Fracture Analysis – Mode-II LT

LT-ENF specimens experienced substrate failure (brittle deformation visible under microscope)

ICCM23 - August 2, 2023

Conclusions and Next Steps

- **Key finding:** at extreme low temperatures (-40°C), the methacrylate adhesive experienced brittle cohesive failure during Mode-I testing and substrate failure during Mode-II testing.
- At RT, peak load and displacement at failure increases with increasing bond-line thickness.
- At LT, primary modes of failure are combined brittle cohesive and interfacial failure (for each thickness).
 - Varying coefficients of thermal expansion may contribute to stress concentrations within substrate (particularly around stitching sites).
- Obtaining G_{IC} for LT conditions requires performing additional LT-DCB tests.
- Determine G_{IIC} for RT and LT conditions using "effective" crack length method.
- Investigate influence of surface pretreatments on adhesive bond strength (e.g., laser etching and gritblasting).

Acknowledgements

- Special thank you to Ramin Dehaghani and Mehdi Ghazimoradi (CRG) for assistance with vacuum infusion processes.
- Special thank you to Devon Hartlen (CRG) for assistance with lab training and specimen bonding.
- Special thank you to Professor Marco Alfano for feedback and input in adhesive bonding theory.

References

- M. Quitoras, "Rethinking energy policy in Canada's remote communities," Pembina Institute, 18-Nov-2020. [Online]. [Accessed: 04-May-2023].
- 2. R. E. Murray, J. Roadman, and R. Beach, "Fusion joining of thermoplastic composite wind turbine blades: Lapshear bond characterization," Renewable Energy, vol. 140, pp. 501–512, 2019.
- 3. Z. Jia, G. Yuan, D. Hui, X. Feng, and Y. Zou, "Effect of high loading rate and low temperature on mode I fracture toughness of ductile polyurethane adhesive," Journal of Adhesion Science and Technology, vol. 33, no. 1, pp. 79–92, 2018.
- 4. R. Campilho, J. Ribeiro, R. Rocha, A. Leal, and F. Viana, "Validation of fracture envelopes of structural adhesives for mixed-mode strength prediction of bonded joints," Frattura ed Integrità Strutturale, vol. 13, no. 48, pp. 332–347, 2019.
- 5. "ASTM D5528/D5528M-21 Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites 1," ASTM, vol. 15, no. 3, Jan. 2022.
- 6. B. Chen and D. A. Dillard, "The effect of the T-stress on crack path selection in adhesively bonded joints," International Journal of Adhesion and Adhesives, vol. 21, no. 5, pp. 357–368, 2001.

