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Background – Motivation for Work
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Roadmap for supporting energy projects and promoting diesel reduction in 
indigenous communities1.

• Clean and sustainable 
energy sources are critical 
for remote communities

• Micro-generating wind 
turbines present a viable 
alternative to diesel 
generators

• Harsh environments 
impose a high demand on 
wind turbine blades
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Background – Turbine Blade Manufacturing

• Our group has developed a resin 
infusion process for blade shells

• Resin used is a reactive 
polymethyl methacrylate (PMMA)

• Turbine blade assembly 
is composed of two adhesively-
bonded composite blade shells

• Thermoplastic composites are 
more difficult to bond than 
thermoset composites
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Adhesive-bonded micro-generating wind turbine blade.
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Introduction – Thermoplastic Adhesives
• Murray et al. successfully bonded 

thermoplastic composites with 
methyl methacrylate (MMA) 
adhesives2

• Thermoplastic adhesive testing 
with variable temperature has 
been conducted by Jia et al.3

• To the author’s knowledge, low 
temperature testing of 
methacrylate adhesive with 
thermoplastic substrate has not 
been reported
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Jia et al. demonstrated that temperature has a drastic effect on 
polyurethane (thermoplastic) adhesive performance at quasi-static 
loading conditions3. Adhesive used to bond steel substrate.

Objective: Characterizing the temperature and bond-line thickness effect on 
Mode-I & Mode-II fracture response of a thermoplastic adhesive
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• Material system: Elium® 188 XO PMMA resin (Arkema) reinforced with glass fiber 
unidirectional non-crimp fabric (UD-NCF) (SAERTEX®)

• Substrates underwent abrasion and degreasing surface treatment on mold-side surface 
prior to bonding

• Substrates bonded with FIT30-45 MMA adhesive (Bostik) with bond-line thicknesses in the 
range 0.2mm to 1.0mm

Sample Preparation – Substrate
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Cross-sectional image of thermoplastic fiberglass panel. [0]4 stacking sequence with ≈48% FVF. 



Shim thickness
(mm)

Length L
(mm) 

Width B
(mm)

Bond-line 
Thickness tA
(mm ±STV)

Pre-Crack; Shim 
length a0

(mm ±STV)

Total Sample 
Thickness 2h
(mm ±STV)

Average Surface 
Roughness
(μm ±STV)

0.25

140 25.4

0.3268 ±0.04905 45.52 ±0.4417 6.008 ±0.08802

0.764 ±0.04690.635 0.7225 ±0.1247 45.41 ±0.4704 6.348 ±0.06547

0.8 0.8073 ±0.07316 45.89 ±0.4164 6.507 ±0.06178

Sample Preparation – DCB Bonding
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DCB specimen dimensions.
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DCB specimen schematic4.



Sample Preparation – ENF Bonding
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Shim thickness
(mm)

Mid-Span 
Length L

(mm)

Width B
(mm)

Bond-line 
Thickness tA
(mm ±STV)

Pre-Crack; Shim 
length a0

(mm ±STV)

Total Sample 
Thickness 2h
(mm ±STV)

Average Surface 
Roughness
(μm ±STV)

0.25

75 25.4

0.3041 ±0.04639 51.41 ±0.2635 6.147 ±0.1819

0.764 ±0.04690.475 0.6052 ±0.02707 52.68 ±0.5493 6.429 ±0.08791

0.675 0.7211 ±0.06853 52.46 ±0.3609 6.480 ±0.06961

ENF specimen dimensions.
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ENF specimen schematic4.



Experimental Method – Fixture Setup
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Piano hinge fixture setup for DCB testing.

Piano hinge 
aligned within 

grip fixture

Data captured 
at 2 Hz

Displacement 
control (0.1mm/s)
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3 Point Bend (3PB) fixture setup for ENF testing.

Specimen aligned 
along mid span of 3 
Point Bend fixture



Experimental Method – LT Test Setup
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LN2 canister used to cool climate 
chamber for LT tests.

Sample enclosed within climate chamber; crack front still visible 
through glass with DSLR.

Climate 
chamber

• Samples tested using 
MTS 810 servo-
hydraulic test frame

• Climate chamber with 
LN2 canister used for LT 
tests

• Cooling rate of 
-6.5°C/minute followed 
by conditioning for 5 
minutes at set 
temperature of -40°C

DSLR used to track 
crack tip for data 

reduction algorithm.
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Experimental Results – Mode-I
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Experimental Results – Mode-I Fracture Toughness

12

Overlay of average Load-Displacement curves for DCB tests at RT and LT. 
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Bond-line Thickness
(mm)

GIC

(N/mm)

0.25 0.929

0.635 1.231

0.8 1.632

Below: GIC calculations using MBT method for RT-DCB specimens.

• Modified Beam Theory (MBT) Method 
(from ASTM D5528) used to determine 
mode-I strain energy release rate (GIC)5 

for RT-DCB samples

• LT-DCB GIC calculations incomplete 
due to errors in elastic curve



Numerical Model – Mode-I RT
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• RT-DCB experiments simulated in ABAQUS 
using cohesive elements to determine TSL parameters

• GIC from experimental results used as fracture energy 
input

• Discrepancies in elastic response may be due to process 
errors during sample bonding
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Bond-line 
Thickness 

(mm)

Initial 
Stiffness

(MPa)

Peak 
Traction
(MPa)

Fracture 
Energy

(MPa mm)

0.25 1000 15 0.929

0.635 500 15 1.23

0.8 2000 15 1.63

Bilinear traction separation law parameters for ABAQUS simulations.



Fracture Analysis – Mode-I RT
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RT, 0.8mmRT, 0.25mm RT, 0.635mm

Note: Inconsistent Scale
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RT, 0.25mm RT, 0.8mmRT, 0.635mm



LT, 0.635mm LT, 0.8mmLT, 0.25mm

Stitching 
Failure

Fracture 
“Valley”

Fracture 
“Ridge”

LT fracture ridge/valley with exposed stitching.LT fracture ridge/valley.LT fracture surface.

Fracture Analysis – Mode-I LT
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LT, 0.8mmLT, 0.8mmLT, 0.8mm

Unbonded composite at 500x magnification. LT fracture ridge at 500x magnification. LT fracture valley at 500x magnification.

ICCM23 - August 2, 2023



Fracture Analysis – Mode-I LT
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• LT-DCB samples characterized by oscillatory “groove” patterns (valleys and ridges)

• Residual stresses caused by specimen cooling may have increased crack-path 
instability (T-stress theory)6

• 3D depth display was used to characterize surface roughness for varying adhesive 
thicknesses

LT, 0.25mm LT, 0.635mm LT, 0.8mm

Rz: 201μm Rz: 646μm Rz: 681μm
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Experimental Results – Mode-II
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Experimental Results – Mode-II
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Overlay of average Load-Displacement curves for DCB tests at RT and LT. 
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• RT and LT GIIC calculations incomplete due 
to challenges observing crack-tip during 
shear deformation

• Trials using DIC were unsuccessful for 
Mode-II crack tip tracking

Unsuccessful DIC crack-tip monitoring trial. 



Fracture Analysis – Mode-II RT
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RT, 0.625mmRT, 0.25mm RT, 0.475mm
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RT, 0.625mmRT, 0.25mm RT, 0.475mm

• RT-ENF specimens exhibit hackle formulations indicative of shear failure



LT, 0.475mm LT, 0.625mmLT, 0.25mm

Fracture Analysis – Mode-II LT
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LT, 0.475mm LT, 0.625mmLT, 0.25mm
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• LT-ENF specimens experienced substrate failure (brittle deformation visible under microscope)



Conclusions and Next Steps
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• Key finding: at extreme low temperatures (-40°C), the methacrylate adhesive experienced brittle 
cohesive failure during Mode-I testing and substrate failure during Mode-II testing.

• At RT, peak load and displacement at failure increases with increasing bond-line thickness. 

• At LT, primary modes of failure are combined brittle cohesive and interfacial failure (for each 
thickness). 
• Varying coefficients of thermal expansion may contribute to stress concentrations within substrate 

(particularly around stitching sites).

ICCM23 - August 2, 2023

• Obtaining GIC for LT conditions requires performing additional LT-DCB tests.

• Determine GIIC for RT and LT conditions using “effective” crack length method.

• Investigate influence of surface pretreatments on adhesive bond strength (e.g., laser etching and grit-
blasting).
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