

# Chemical-etching-based observation on spherulitic and interfacial morphologies of fiber reinforced thermoplastics

- How cooling rate affects the interlaminar bond strength of UD GF/PP composites

Jiakuan Zhou, Frederik Desplentere & Jan Ivens



omposite aterials roup Department Faculty of E De Nayer (S

Department of Materials Engineering Faculty of Engineering Technology De Nayer (Sint-Katelijne-Waver) Campus



# **Presentation overview**



**CHAPTER 1** Background: Bond strength development

> **CHAPTER 2** Materials and experiments

**CHAPTER 3** From the perspective of materials

**CHAPTER 4** From the perspective of microstructures

> CHAPTER 5 Conclusion

2

# **Bond strength development**



- Consolidation is a function of temperature, pressure, and time, thus highly depends on **thermal history**;
- Bond strength is built up with the development of interdiffusion and entanglement of polymer chains, hence dominated by **polymer matrix**!



**KU LEUVEN** 

# **Materials and experiments**

#### Materials:

 Glass fiber reinforced polypropylene (GF/PP) UD laminates [0°]<sub>4</sub> by compression molding

#### **Consolidation parameters:**

- Isothermal temperature: 190 °C ~ 240 °C;
- Holding time: 10 min;
- Pressure: 0.7 MPa;
- Different cooling rate



|                          | at 200 °C | at 166 °C | at 102 °C |
|--------------------------|-----------|-----------|-----------|
| Slow cooled samples (SC) | 51 K/min  | 42 K/min  | 23 K/min  |
| Fast cooled samples (FC) | 604 K/min | 484 K/min | 206 K/min |
|                          |           |           |           |



#### **Remark:**

• For semi-crystalline GF/PP, the higher the cooling rate, the higher the bond strength

#### [1] Schäfer, P. M. (2017). Consolidation of carbon fiber reinforced polyamide 6 tapes using laser-assisted tape placement (Doctoral dissertation, Technische Universität München). 4

KU LEUVEN

# **Materials: Crystallization**

XRD and DSC analysis:





From the perspective of materials, more amorphous PP, fine α – PP, and β – PP exhibit higher ductility, significantly enhancing the bond strength of fast cooled GF/PP

The underlying and direct causes?



Performance determined by the microstructure!

### **Microstructures: chemical etching**

**Delaminated surfaces:** 



#### (Near GF surface) Matrix failure!

 $\rightarrow$  How to visualize the (near GF surface) morphology?



#### **Chemical etching (CE)**:

The **permanganic acid etchant** preferentially etches the amorphous part of the polymer in the spherulites, in such a way that the lamellae then clearly appear [1]





#### **Revealed PP spherulite by CE**

[1] Lu, Z., & Zhang, K. F. (2009). Morphology and mechanical properties of polypropylene micro-arrays by micro-injection molding. The International Journal of Advanced Manufacturing Technology, 40(5), 490-496.

6

### **Microstructures: F/M morphology**

<u>As-manufactured laminates, after</u> epoxy embedding, polishing, etching:

**KU LEUVEN** 

- Fiber nucleation;
- Different growth tendencies;
- Different F/M morphology.



# Crack propagates along the grain boundary



#### FC:

SC:

- Spreading growing;
- Semi spherulites;
- More amorphous PP, and fewer spherulites.

Perpendicular growing; (Like) transcrystalline

structures.

# **Microstructures: F/M morphology**



Interlocked grain boundary, with more amorphous PP in between spherulites, higher fiber-matrix adhesion

Relatively flat and straight grain boundary parallel to GF surface (also wedge peeling direction), poor fiber-matrix adhesion

### Conclusion

- High cooling rate induces lower crystallinity, smaller crystallite size, and βcrystals, resulting in a more ductile matrix;
- ✓ Different cooling rate makes differences in fiber-matrix morphology, resulting in different crack propagation paths and hence the different level of bond strength





# Thank you!

# **Jiakuan Zhou**

Department of Materials Engineering KU Leuven jiakuan.zhou@kuleuven.be



# TexComp-15 Conference: coming back home! 11-13 September 2024 | Leuven, Belgium

Abstract submission deadline 31 Mar 2024



www.tinyurl.com/texcomp15

TexComp15@gmail.com