/N International Conference on Composite Materials 23

! ;::;:::;:;;) Belfast 2023 C @ THE UNIVERSITY OF TOKYO

1206

SIMULATION OF FIBER ORIENTATION DURING
COMPRESSION MOLDING PROCESS OF CFRTP-SMC

Graduate School of Engineering, Systems Innovation

Zihao Zhao, Ye Zhang, Yi Wan , Xiaodong Xu, Jun Takahashi




ICCM 23

) _ @ THE UNIVERSITY OF TOKYO

OUTLINE

Background
v Background of the topic
v Purpose and Approach

* Experimental Fabrication with different flow circumstances
 Maechanical test & Internal structure characterization

v" Three-point bending test and result

v’ Fiber orientation distribution analysis
* Numerical simulation

v' Method

v" Molding simulation and result

e Correlation and tasks




' :MGUT“) & THE UNIVERSITY OF TOKYO

OUTLINE

Background
v Background of the topic
v Purpose and Approach

* Experimental Fabrication with different flow circumstances
* Maechanical test & Internal structure characterization

v Three-point bending test and result

v’ Fiber orientation distribution analysis
* Numerical simulation

v" Method

v" Molding simulation and result

e Correlation and tasks




PO

Background = Background of the topic W
N

]

£/ ccmaz )

THE UNIVERSITY OF TOKYO

0
34

o

* Environmental issues - Global Warming

Greenhouse gas emissions by gas, World oo
Global greenhouse gas emissions by gas source, measured in tonnes of carbon dioxide equivalents (tCOe).

Gases are converted to their CO,e values based on their global warming potential factors. HFC, PFC and SF, are

collectively known as 'F-gases'.
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Carbon dioxide (CO,) emissions by sector or source, World

Share of carbon dioxide (CO,) emissions from fuel combustion by sector or source.
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Anomalies are deviation from baseline (1981-2010 Average).

The black thin line indicates surface temperature anomaly of each year.
The blue line indicates their 5-year running mean.

The red line indicates the long-term linear trend.
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Background

CFRP & CFRTP & Sheet Molding Compound (SMC) (CTT)

Type of
composite
system

Injection
molded

Mat structure
thermoplastics

Chopped carbon fiber
tape reinforced
thermoplastics (CTT)

Continuous
Laminates

Fiber volume . i .
fraction Vy Relatively low {/2\45%%% High (>50%) High (>50%)
) - Middle High ;
Aspect ratio L/D | Low (variation) (hundreds) (hundreds-thousands) Highest
Formability Superior General Superior gggggggg;
In-plane isotropy | 4 ;g%ﬁgsesm Feasible Feasible Designable

Ease of processing

f

Relative
Processability

-

Relative
Performance
(Strength/Stiffness)

Melt Flow Random
Oriented Chopped
(Injection  Strands
Molded) (SMC)

Discontinuous Continuous

Collimated
Fibers

Fiber
System

Mechanical performance

4% THE UNIVERSITY OF TOKYO

Propose and verify
a reliable CFRTP-

SMC compression
molding simulation
method

Simulate complex
component forming
process in industry
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* Process simulation on SMCs

SDTIMON

ABAQUS/EXPLICIT(SPH)

ABAQUS/EXPLICIT
(Coupled Lagrangian Eulerian
(CEL) feature.)

Direct Simulation Models | Abaqus
at Microscale and

Mesoscale
3D 3D TIMON
TIMON CompositePRESS
Macroscopic Process Moldflow
Simulation Moldex3D(+LS-Dyna)

Verification on:
Fiber orientation; Compression force; Flow front curves; Modulus
distribution; Warpage; Fiber length; thickness
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Chopped CFRTP-SMC
sheet with PA6 Area after molding Area after molding is constant

Charge ratio = : Area before molding is used to
Area before mOIdmg control the charge ratio

Expected parameter of different charge ratio plate:

Cut sheet Size of sheet Charge Ratio Weight/g Thickness/mm
v in Mold 125x250 1 92 2
L (Size of the mold)
125x167 1.5 92 2
125x125 2 92 2
Molding 125x100 2.5 92 2
condition (2 plate for each size, totally 8 plates)
Temperatures/°C 270 S e | e R = After molding
Force/kN 156 E.g. Molded plate of

Charge ratio 1.5
Time/min 20
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Charge Ratio: 1

CFRTP-SMC
Sheet

Charge Ratio: 2.5

125mm

Charge Ratio: 1 Charge Ratio: 1.5 Charge Ratio: 2
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Specimen Stress-strain curve:
1000 Charge ratio 2.5 1000 Charge ratio 2.5
- Charge ratio 1 Charge ratio 1
800 800
%600 é 600
%400 E 400
Flow direction : B
> 200 200
* Span x width x height: 40 x 10 x 2 mm , ;
e Number: 4 for each area oot 2 2 e s 678 A
Flexural strain Flexural strain
Length direction Width direction

* Flow seems to have little effect on the destruction process of CFRTP-
SMC which is considered as a brittle material
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» Three-point bending tests results
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* The modulus and strength in length directions has a tendency to increase and tend to decrease in width direction
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* Analysis of the fiber orientation by X-ray 500 CT image
Method of samplings and analyze PY

SHIMADZU
inspeXio
SMX-100CT




Internal structure characterization

Analysis of the fiber orientation by X-ray
FOD results
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e Method and model
beam-solid coupling method model simplification

v3 Resin model(solid

V2 / element)
Fy v _— Slmphﬁed '\ Fiber model(tmss
] i S S S N - element)
o | Resistive force [~ R
V4
V1
Solid element (resin) Truss element (fiber)
(@ (b)
S
S o
2 ey
K T - S0
R e
Sliding distance - T
(©
Use the beam-solid coupling method to
create LS-DYNA models for analysis Schematic of the real FE model

CFRTP-SMC

1. HayashiS. New simulation technology for compression molding of long fiber reinforced plastics: Application to randomly-oriented strand thermoplastic composites. ECCM 2018 - 18th European Conference on
Composite Materials, 2020, p. 24-8.
2. HayashiS., Japan Patent 6584708
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e Method and model
FE model and simulation results
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Numerical simulation

Simulation result

* Simulation correlation on FOD

Frequency change
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Fiber of edge part in simulation
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Conclusions

Mechanical test & Internal structure characterization

v" Found that for one direction flow molding, as the degree of flow increases, the

material modulus will be enhanced in the direction of flow, while in the direction
perpendicular to the material flow, the modulus will decrease.

v" The internal structure of flowing CFRTP-SMC was studied by X-ray, and the change of

fiber orientation was found.

Numerical simulation

v' CFRTP-SMC material flow molding simulation was realized and verified through a

FEM simulation method.

v The fiber orientation distribution has been simulated based on different charge ratios
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Appendix \

FOD results analyzed from 0/45 =0
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Appendix

Material parameters in simulation

Geometry model parameters

Property Value Unit
Resin
Young’s Modulus 0.2 MPa
Mass Density le-09 ton/mm?
Friction coefficient 0.05 -
Poisson’s Ratio 0.49995 -
Yield Stress 0.0001 -
Stiffness 0.2 Mpa
Fiber
Mass Density 1.82¢-09 ton/mm?
Young’s Modulus 207 GPa
Poisson’s Ratio 0.3 -
Interaction
Resistive Force 0.05 N/mm
Start-up sliding amount 0.2 mm

Property Value Unit
Strand length 19 mm
Strand width 5 mm
Fiber number in width direction 6 -
Beam length 1 mm
Strands per cluster 2 -
Cluster size 7 mm
Length of fiber [mm]
Strands per Cluster Radially
(Recommended: | ~3)
- L8 Width [mm]
Cluster Unit Width [mm]
(Recommended: 5.0~ 10.0) ’TI
100 Number of fibers

Fiber tape

"—0—0—0—0—0—0—0—0—0 6
Number of elements per fiber

Number of layers

Length of truss element

1 [mm)]




