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London dispersion in «t electron complex
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Induced dipole forces and London disperson force
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London dispersion dominates the binding energy between two
atoms and molecule complexes, chemical reactivity, molecular
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delocalized &t electrons within nanocomposites as an attractive
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steric effect
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The balance between London dispersion

and Steric hindrance
G @ Steric Hindrance

The interaction energy, stability w _
and conformation, nanostructure %

of atom and molecule complexes
with van der Waals (vdW)
bonding are often determined by
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Application of CNT/PI nanocomposites
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Advantage of CNT/PI nanocomposites

The 25m diameter ARISE Antenna
Concept for VLBI (NASA JPL)
RIGIDIZABLE MATERIALS FOR
USE IN GOSSAMER SPACE
INFLATABLE STRUCTURES

High temperature and high performance polyimides which have a high glass transition
temperature, withstanding a high temperature for a long period of time in air and in an
inert atmosphere, and posses unusual stability. Harsh Space environmental conditions,
including atomic oxygen resistance, ultraviolet and vacuum ultra resistance, low
color/low solar absorption, electron and proton resistance, chemicals, moisture, electric
fields, mechnaical stress, radiation and heat
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Polyimides and their application
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Application of CNT nanocomposites
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Induced dipole forces and London disperson force
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(n,0) zigzag
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(1) armchair

The (n,m) nanotube naming scheme can
be thought of as a vector (Ch) in an infinite
graphene sheet that describes how to "roll
up" the graphene sheet to make the
nanotube. T denotes the tube axis, and a1 A scanning tunneling microscopy image of
and a2 are the unit vectors of graphene in  Single-walled carbon nanotube

real. space 14
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PI molecular plane

CNT outer wall

. Molecular interactions of polyimides with single-walled
carbon nanotubesPolym. Chem., 2013, 4, 290-295



FIG. 1. (Color online) (a) Schematic representation of a single
polymer strand coiling along the nanotube axis at an angle #. The
strand is represented by monomers connected by elastic springs. (b)
In the two-dimensional depiction, the unwrapped tube 1s repre-
sented by a stripe of width 2#R and the coiling angle # defines a
unit cell of length 2#R/tan 6.

g The alignment process of polymer on CNT
(Geometric constraints in the growth of

21 R ]

— nanotube-templated polymer monolayers )
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A. Wall, J. Coleman, M. Ferreira. Physical mechanism for the mechanical reinforcement in
nanotube—polymer composite materials. Phys. Rev. B 2005, 71(12), 125421.
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2 Experimental and methology

* In-situ polymerizaion of GNT/PI nanocomposites
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In-situ polymerizaion of CNT/PI nanocomposites
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Schematic illustration for in situ polymerization of CNT/PI(AAPB/ODPA)
nanocomposites in the presence of COOH-CNTs
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TEM image of CNT
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2.2 Methodology (computational
method)

1 In order to qualitatively evaluate the dispersion energy deriving from phenyl
moieties and benzoxazole ring, a symmetry-adapted perturbation theory (SAPT)
analysis was employed. In an effort to understand the determinants of these
interactions energy between aromatic Pl and carbon nanotubes, we performed
symmetry adapted perturbation theory (SAPT) calculations.

2 Armchair (222,222) type carbon nanotube (CNT) with diameter of 30.1 nm was
chosen and its atomic coordinates were obtained using VMD Nanotube builder
plugin. Using only a part of the nanotube surface for calculations was justified not
only by computational cost, but also by the size ratio between nanotube and
fragment/monomer.

3 Materials studio was employed to calculate the morphology of two Pls around
CNT



R1

R4

Fragments R1-R5 after gggmetry optimization at
B3LYP-D3/6-31G* level



CNT shest

The R1 fragment parallel to smaller CNT sheet. The red sphere indicates the center of the six carbon atoms, the blue sheet is the
plane of the CNT sheet, and the green dotted line i1s the normal distance (R) between the two. In case of fragments with conjugated
ring systems, the center of the six-membered carbon ring was used to calculate the normal distance.






3 Results

* 3.1 Experimental results
* 3.2 Calculation results



3.1 Experimental results
3|

Ll — CNT/OPI nanocomposites

|=— CNT/FPI nanocomposites
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Figure The representative stress-strain curve of
CNT/FPI and CNT/OPI nanocomposite films,

respectively

Figure 5 SEM of local fracture surface morphology
of 0.5wt. %CNT/FPI (a) and 0.5% wt. CNT/OPI (b)

nanocomposites



FT-IR, Raman and UV-vis Spectra of nanocom
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Amorphous PI and semi-crystalline P1 and their
nanocomposites
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PL spectroscopy of CNT and two Pls

CNT outer wall

C PI molecular plane

CNT outer wall
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3.2 Calculation results

Table 1. The interaction energies (AE) and interaction energies per fragment electron (AE/n,)
for fragment/CNT systems optimized at B3LYP-D3/6-31G* level.

Normal distance R (A) AE (kcal/mol) AE/n (kcal/mol)
R1/CNT 3.383 -9.47 -0.2255
R2/CNT 3318 -12.36 -0.1994
ravcile optimjzed, geometry is in orientation JLL, e
R4/CNT 3.861 -16.13 -0.1090
R5/CNT! 3376 -15.46 -0.2034




centreid

CNT plene

Figure 6. The geometry of R4/CNT system after full optimization at B3LYP-D3/6-31G* level starting from the
geometry with fragment plane parallel to CNT sheet (Figure SI 2, orientation I). The figure shows relevant distances
in the system and an angle between the CNT plane and the R4 plane after full geometry optimization.



Table 2. Normal distances (R), interaction energies (AE), and interaction energies per
fragment electron (AE/n.) calculated at B3LYP-D3/6-31G* level for each fragment with
CNT for coordinates obtained from energy minimization with GAFF force field.

Normal distance R (A) AE (kcal/mol) AE/n.(kcal/mol)
R1/CNT 3.405 -9.21 -0.2193
R2/CNT 3.464 -12.05 -0.1944
R3/CNT 3.406 -16.13 -0.1920
R4/CNT 3.978 -16.14 -0.1091
R5/CNT 3.406 -15.24 -0.2005




Table 3. Interaction energies (AE) and interaction energies per monomer electron (AE/n,) at
B3LYP-D3/6-31G* level for two conformation of PI and FPI monomers with CNT in
orientations obtained with MM energy minimization using GAFF force field.

Monomer/CNT AE (kcal/mol) AE/n (kcal/mol)
OPI-1/CNT -46.64 -0.1808
OPI-2/CNT -45.84 -0.1777
FPI-1/CNT -38.45 -0.1194
FPI-2/CNT -39.13 -0.1215
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Figure 7. PI-1/CNT system after energy minimization with the GAFF force field. The interaction energy at B3LY P-
D3/6-31G* level 1s -46.64 kcal/mol
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Figure 8. PI-2/CNT system after energy ‘minimization Wlth the GAFF force field. The interaction energy at B3LYP-
D3/6-31G* level is -45.84 kcal/mol



Figure 9. FPI-1/CNT system after energy minimization with the GAFF force field. The interaction energy at B3LYP-
D3/6-31G* level is -38.45 kcal/mol
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Figure 10. FPI-2/CNT system after energy minimization with the GAFF force field. The interaction energy at
B3LYP-D3/6-31G* level is -39.13 kcal/mol



Table 4. Decomposition of interaction energy at SAPTO0/6-31G™* level into
electrostatic , exchange , induction and dispersion terms for each fragment with

CNT sheet
'E're: Eex Eiﬂd E. ESAFTIJ
disp
R1/CNT -5.62 +13.36 -1.08 -16.58 -9.93
R2/CNT -8.38 +20.02 -1.82 -24.60 -14.78
R3/CNT -11.32 +26.90 2.92 3131 -18.65
R4/CNT -10.05 +26.29 -2.70 -30.17 -16.63
R5/CNT -10.14 +24.86 2.73 -29.37 -17.37




\. .
d b

*_’ -
&

lculation

10 Ca

Is stud

3 Materia

Y 8L81

Y HIST

yorer




1220 A

16.00 A

22.29 A




4 Conclusion

1 Noncovalent interactions play an increasingly important role in nanocomposites in which
nanoscale interactions between nanofiller and polymer matrix control composite interfaces.
Monomer chemical structure play a crucial role in the interaction with CNT, the aromatic OPI
with less steric effects adopt parallel confirmation to maximize the dispersion interaction with
CNT, while the FPI with bulky group failed to take the parallel conformation around CNT.

2 The bulky 2(CF3)2 group inhibit the conformation due to steric strain. The CNT/FPI display
a pull-out slip mechanism under uniaxial tension, the carbon nanotube was pull out of the
surrounding polyimide chain, which indicates the weak interfacial interaction energy between
CNT and molecule segments of FPI because of steric hindrance from nearby (CF3)2 change
its conformation from a random from to more strained forms. The CNT/OPI nanocomposites
display stronger interaction energy than that of FPI and shorter distance between monomer
and carbon nanotube. In the case of PI with ether bond, 1t appears that 1s preferentially in the
plane of the phenyl ring of the polyimide backbone.



3 in the process of the in-situ polymerization of polyimide in the presence of carbon nanotubes,
the flexible polyimide molecules prefer to assembly actively around the rigid nanotubes driven
by London dispersion. However, due to the Pauli repulsion arising from steric effects, the two
polyimides with different substituent groups adopt different conformation around carbon
nanotubes

4 OPI with ether bond substituent adopt parallel conformation with weak internal steric strain
energy, which result in strong interaction energy between them. By contrast, the rigid nature of
symmetry and bulky —C(CF3)2 groups of FPI, restrict parallel conformation, the FPI having to
adopt tilting conformation with strong internal steric strain energy, which resulting weak
interaction energy between them. The synergetic effect of conformation and interaction energy
leads to different stress transfer efficient, and consequent different failure mode, CNT pull-out
failure and CNT yielding failure.
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