

Accelerating multiscale simulations with surrogate models based on recurrent neural networks

Moisés Zarzoso Carlos González

Simulation of Composite Materials Coupling Scales RNN Learning Plastic Behaviour Learning Damaged Behaviour Summary and Future Work

Simulation of Composite Materials

o domminio

Macroscale

Microscale $\sim 10^{-6} m$

LLorca, J., González, C., Molina-Aldareguía, J.M., Segurado, J., Seltzer, R., Sket, F., Rodríguez, M., Sádaba, S., Muñoz, R. and Canal, L.P. (2011), Multiscale Modeling of Composite Materials: a Roadmap Towards Virtual Testing. Adv. Mater., 23: 5130-5147.

Mesoscale

Simulation of Composite Materials

Microscale $\sim 10^{-6} m$

Matrix Cracking Fibre Breakage Fibre Kinking Interface Decohesion

Mesoscale $\sim 10^{-2} m$

Delamination

Macroscale Failure $\sim 10^1 - 10^2 m$

LLorca, J., González, C., Molina-Aldareguía, J.M., Segurado, J., Seltzer, R., Sket, F., Rodríguez, M., Sádaba, S., Muñoz, R. and Canal, L.P. (2011), Multiscale Modeling of Composite Materials: a Roadmap Towards Virtual Testing. Adv. Mater., 23: 5130-5147.

domminio

MULTISCALE SIMULATION STRATEGY

domminio

Simulation of Composite Materials

A. H. Baluch, O. Falcó, J. L. Jiménez, B. H.A.H. Tijs, C. S. Lopes,

This project has received funding from the European Union's Horizon 2020 An efficient numerical approach to the prediction of laminate tolerance to Barely Visible Impact Damage, 6 composite Structures, Volume 225, 2019

FE²- Concurrent

Computationally Expensive

Representative Volume Elements are simple

Coupling Scales. Surrogate model based on NNs

domminio

Elastic

 $\boldsymbol{\sigma}(t_i) = f\left(\boldsymbol{\varepsilon}(t_i)\right)$

Damaged Behaviour

 $\boldsymbol{\sigma}(t_i) = f\left(\boldsymbol{\varepsilon}(t_0, t_1, \dots, t_{i-1}, t_i)\right)$

Recurrent Neural Networks

Elastic

 $\boldsymbol{\sigma}(t_i) = f\left(\boldsymbol{\varepsilon}(t_i)\right)$

Damaged Behaviour

 $\boldsymbol{\sigma}(t_i) = f\left(\boldsymbol{\varepsilon}(t_0, t_1, \dots, t_{i-1}, t_i)\right)$

$$W_{xh} \in R^{h_{units} \times n_x}$$
$$W_{hh} \in R^{h_{units} \times h_{units}}$$
$$W_{yh} \in R^{n_y \times h_{units}}$$

$$\mathbf{h}_{t} = tanh \left(W_{xh} \mathbf{x}_{t} + W_{hh} \mathbf{h}_{t-1} \right)$$
$$\mathbf{y}_{t} = W_{hy} \mathbf{h}_{t}$$

domminio

Initialization : $\mathbf{h}_0 = ar{0}$

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007022.

domminio

Intermediate Modulus Carbon Fibres

Transversally	ν_T	$E_{T}[GPa]$
Isotropic	0.40	13.00

Epoxy Resin

E[GPa]	ν	Isotropic
5.07	0.35	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007022.

Dataset Generation. Generation of strain history paths

Abaqus (Implicit Solver) 0.05 ε_{21} $t \in [0,1]$ -0.05 $\varepsilon \in [-0.1, 0.1]$ -0.1 0 0.1

0.1

1000 paths

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007022.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dataset Generation. Accumulated Plastic Strain

- +5.150e+00
- +4.721e+00 - +4.292e+00
- +3.863e+00
- +3.004e+00
- +2.575e+00 - +2.146e+00
- +1.717e+00
- +8.583e-01
- +4.292e-01 - +0.000e+00

t = 0

t = 1

t = 0.75

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007022.

Dataset Generation. Effect of Fibre's Distribution

o domminio

Neural Network. Architecture

Results. Model Validation

Pure Elastic Behaviour

Matrix-Fibre Interface: **Cohesive Elements**

Matrix:

 $\varepsilon_{X,1}$

Plasticity Damage

Periodic Boundary Conditions

Strain Paths: *t* ∈ [0,1] $\varepsilon \in [-0.012, 0.012]$

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007022.

Damage Evolution

Tensile Damage

t = 0.16

t = 0

t = 0.05

t = 0.83

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007022.

Surro

Learned Behaviour

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007022.

- A methodology for training surrogate models for RVEs is tested on a micro-scale composite material RVE with matrix damage and interface debonding
- The proposed method is able to reconstruct general-shape strain-stress curves under damaged conditions.

Future Work

Implementation in Abaqus

3D RVE

Geometrical Parameters(Volume Fraction, Fibre Diameter,...)

Thank you for your attention

moises.zarzoso@imdea.org

materials.imdea.org

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007022.