

Thickness control of Snap-Cure Prepregs in Automated Placement Conditions

Authors:

Axel WOWOGNO, Robin HARTLEY, Iryna TRETIAK, Stephen R. HALLETT, James KRATZ

bristol.ac.uk/composites

University of BRISTOL

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

Engineering and Physical Sciences Research Council

International Conference On Composite Materials

CONTENTS The context The goals The challenges

Thickness control of Snap-Cure Prepregs in Automated Placement Conditions Axel WOWOGNO

University of BRISTOL

CONTEXT

- Automated Fibre Placement (AFP) : Good method for preform production
 - Autoclave manufacturing : Quality parts, but bottleneck in workflows
 - Technology Need : Alternative composites manufacturing methods
 - Solutions : Different materials and heating/curing methods

Autoclave : Three step manufacturing method

CONTEXT

- Automated Fibre Placement (AFP) : Good method for preform production
 - Autoclave manufacturing : Quality parts, but bottleneck in workflows
 - Technology Need : Alternative composites manufacturing methods
 - Solutions : Different materials and heating/curing methods

University of

Bristol Composites Institute

4

GOALS

Goal: Enhance the AFP process and enable on-line curing with thermosets (Layer-by-layer manufacturing)

© Current manufacturing processes :

- 3-steps process : Cold deposition
- 2-steps process : Hot deposition
 - 1-step process : In-situ AFP
- Approach : Perform compaction tests to characterise materials and process

Desired one-step process In-situ consolidation with thermosets: Curing during the AFP layup step

Thickness control of Snap-Cure Prepregs in Automated Placement Conditions Axel WOWOGNO

Engineering and Physical Sciences Research Council

R

MATERIAL & SETUP

Material : Hexcel M78.1 (Epoxy / Carbon Fibre Prepreg)

Ply Thickness = 0.32 mm Isothermal Cure Properties by DSC [1] Temperature Cure Time (95%) 110°C ≤18min

 110° C $\leq 10^{\circ}$ In 120° C ≤ 8 min 130° C ≤ 6 min 140° C ≤ 3 min 150° C ≤ 2 min 160° C ≤ 1.5 min

[1] : Hexcel, "HexPly® M78.1 Datasheet", 2020.

Thickness control of Snap-Cure Prepregs in Automated Placement Conditions Axel WOWOGNO

epregs in cions

Setup : Universal Instron machine, with custom made heater plates

Engineering and Physical Sciences

Research Council

K

MATERIAL & SETUP

Material : Hexcel M78.1

(Epoxy / Carbon Fibre Prepreg)

Ply Thickness = 0.32 mm Cross-ply / Hand lay-up

Setup : Universal Instron machine, with custom made heater plates

University of BRISTOL Bristol Composites Institute Thickness control of Snap-Cure Prepregs in Automated Placement Conditions Axel WOWOGNO

Engineering and Physical Sciences Research Council University of BRISTOL

Fraining in Composites Science

eering and Manufacturing

MATERIAL CHALLENGES

- Fibre alignment & stickiness
- Impregnation & flow issues
- Surface defects (channels)

Thickness control of Snap-Cure Prepregs in Automated Placement Conditions Axel WOWOGNO

Engineering and Physical Sciences Research Council University of BRISTOL

METHODS (1/2) – Bulk samples

Test : Bulk laminates of 5 to 30 plies + Compression at 0.1 MPa (1 bar) for 5 min

Goal : Assess the effect of laminate thickness on final sample thickness & through thickness temperature evolution

METHODS (2/2) – Ply-by-Ply samples

Test : Creation of laminates by compressing each ply at 0.1 MPa (1 bar) for 2.5s **Goal** : Assess the process on thickness and porosity evolution

MAIN OBSERVATIONS (1/3)

- M78.1 shows the high reactivity desirable for LBL curing of composite materials.
 - Usable even at low processing temperatures such as 100°C.

Dynamic Complex Viscosity of HexPly[®] M78.1 @ 5°C/min [1] : Hexcel, "HexPly[®] M78.1 Datasheet", 2020.

MAIN OBSERVATIONS (2/3)

- M78.1 shows the high reactivity desirable for LBL curing of composite materials.
 - Usable even at low processing temperatures such as 100°C.

Low temperatures (100-130°C)

Low viscosity and low cure rate =

Improvement of the plies bonding

Thickness control of Snap-Cure Prepregs in Automated Placement Conditions Axel WOWOGNO

Engineering and Physical Sciences Research Council

MAIN OBSERVATIONS (3/3)

- M78.1 shows the high reactivity desirable for LBL curing of composite materials.
 - Usable even at low processing temperatures such as 100°C.

Thickness control of Snap-Cure Prepregs in Automated Placement Conditions Axel WOWOGNO

Engineering and Physical Sciences Research Council

CT SCANS (1/4)

Computed Tomography : Feature observation & Porosity measurement

Thickness control of Snap-Cure Prepregs in Automated Placement Conditions Axel WOWOGNO

Engineering and Physical Sciences Research Council

K

CT SCANS (2/4)

Histogram representation

Porosity observation and measurement

Thickness control of Snap-Cure Prepregs in Automated Placement Conditions Axel WOWOGNO

Engineering and Physical Sciences Research Council

CT SCANS (3/4)

BULK laminate

(160C – 1bar – 5min)

PBP laminate

(160C - 1bar - 2.5s/ply)

CT SCANS (4/4)

Laminates comparison : Bulk vs Ply-by-Ply

ICCM 23 BELFAST 2023

Ply-by-Ply laminates

Key Parameters : 10 plies + 1 bar (250N) + 2.5s/plyTotal cycle time : 25 min (handling + compaction)

Engineering and Physical Sciences

Research Council

RI

T_{Bulk} (°C) 1

Thickness control of Snap-Cure Prepregs in Automated Placement Conditions

BULK laminates

Key Parameters : 10 plies + 1 bar (250N) + 5 min

Cycle time : 5 min (+ layup + debulking = 25 min)

Axel WOWOGNO

Width **≈** Thickness **≈** Defects **≈**

University of BRISTOL

Engineering and Manufacturing

EPSRC Centre for Doctora Training in Composites Science 18

FEATURE EVOLUTION

Recommendation : Use medium temperatures. Do not go above 130C for the ply-by-ply process

Tool developed to optimise compaction parameters (heating rate, hold time, target temperature) &

understand in-process property development to achieve target DoC after each compaction cycle.

Outcomes : Ply-by-Ply Cure & Temperature monitoring / Prediction of isothermal times to reach $\alpha^{gel} = 0.41$

Thickness control of Snap-Cure Prepregs in Automated Placement Conditions Axel WOWOGNO

Engineering and Physical Sciences Research Council

Tool developed to optimise compaction parameters (heating rate, hold time, target temperature) &

understand in-process property development to achieve target DoC after each compaction cycle.

Outcomes : Ply-by-Ply Cure & Temperature monitoring / Prediction of isothermal times to reach $\alpha^{gel} = 0.41$

Thickness control of Snap-Cure Prepregs in Automated Placement Conditions Axel WOWOGNO

Engineering and Physical Sciences Research Council

Tool developed to optimise compaction parameters (heating rate, hold time, target temperature) &

understand in-process property development to achieve target DoC after each compaction cycle.

Outcomes : Ply-by-Ply Cure & Temperature monitoring / Prediction of isothermal times to reach $\alpha^{gel} = 0.41$

Tool developed to optimise compaction parameters (heating rate, hold time, target temperature) &

understand in-process property development to achieve target DoC after each compaction cycle.

Outcomes : Ply-by-Ply Cure & Temperature monitoring / Prediction of isothermal times to reach $\alpha^{gel} = 0.41$

Tool developed to optimise compaction parameters (heating rate, hold time, target temperature) & understand in-process property development to achieve target DoC after each compaction cycle.

Outcomes : Ply-by-Ply Cure & Temperature monitoring / Prediction of isothermal times to reach $\alpha^{gel} = 0.41$

KEY FINDINGS

- High temperature leads to :
- Decreased ply width (Gel before compaction = less expansion)
- Increased sample thickness (Less expansion = less squeezing)
- Greater defect generation (Less squeezing = Less consolidation)
 - Challenges for simultaneous cure-consolidation
 - The evolving DoC inhibits the consolidation process
- Each ply will have a different DoC, processed time, and thickness

Thickness control of Snap-Cure Prepregs in Automated Placement Conditions Axel WOWOGNO

Engineering and Physical Science Research Counc

CONCLUSIONS

Ø M78.1 = Material suited for on-line curing via AFP (LBL consolidation)

© Control of thickness and porosity possible with AFP parameters

Recommended parameters : 1 bar at 130 °C max.

Next steps

© Use of an AFP rig built in-house at the University of Bristol

©OOA manufacturing of high-quality thermosets composites

University of BRISTOL Bristol Composites Institute Thickness control of Snap-Cure Prepregs in Automated Placement Conditions Axel WOWOGNO

EPSRC Centre for Doctoral Training in Composites Science

University of

Thanks

Acknowledgements

The authors would like to acknowledge the support of **Rolls-Royce** plc through the Composites University Technology Centre (UTC) at the **University of Bristol** and the **EPSRC** through the CoSEM Centre for Doctoral Training (EP/S021728/1) and the Future Composites Manufacturing Hub (EP/P006701/1).

<u>Contact</u> : axel.wowogno@bristol.ac.uk

bristol.ac.uk/composites

University of BRISTOL

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

Engineering and Physical Sciences Research Council

<u>PhD project:</u> Layer by Layer manufacturing of complex composites