Facile Fabrication of Flame-retardant Graphene/Sponge Composite for Pressure Sensing and Electromagnetic Interference Shielding

W. G. Teklebrahan¹, Y. T. Park^{2*}, and J. I. Song^{1*}

¹Department of Mechanical Engineering, Changwon National University ²Department of Mechanical Engineering, Myongji University

Polyurethane foam (PUF)

Unique properties

Comfortable
 Lightweight
 Good resilience
 Insulating behaviour

Advanced applications

■Smart foams (e-foams), i.e., EMI shielding, TENG, piezoresistive, supercapacitors, thermal energy conversion, catalysis, etc.

EMI shielding

(S

Advanced applications Piezoresistive sensor Steam gene

Supercapacitors

Steam generation

Energy conversion

Catalysis

Issues with neat PUF

Highly flammable

- PUF mainly contains C and H
- It is highly porous → swift transfer of heat and fuel during fire hazard

Spreads fire to nearby materials

- Drips flammable molten polymer
- Releases toxic and dense smokes
- CO, HCN \rightarrow deadly within minutes
- Dense smokes makes evacuation and firefighting difficult

Fire risks of consumer products: furniture, cars

Needs modification to lower the flammability and impart functionality

Current strategies

i) Addition of fillers during fabrication

Needs high loading
Affects the physical properties of PUF

ii) Surface coating (Post treatment)

- Modification is on the surface with minimal impact on properties
- Expensive, time-consuming, and tedious due to extensive manual operations

H. Yang et al./Composites Part B 176 (2019) 107185

Research interests

Research interests ... cont.

Nanocomposites	Functional coatings	Matrices & filers
PUF/EG/CB/IL ^[1]	LbL, PEC, dip-coating ^[2-4]	Matrices: Several biopolymers (CH, AL, PDL, PA)
 Excellent flame retardancy Application in energy harvesting Application in oil-leak sensor 	 Improved flame retardancy Application in pressure sensing and energy Application in EMI shielding 	 Carbon based fillers: expandable graphite (EG), GNP, CB, biomass-derived mesoporous carbon Clay: montmorillonite (MMT)

Energy harvesting

Motion sensing

EMI shielding

[1] T. G. Weldemhret et al. /Chemical Engineering Journal 450 (2022) 137982
 [2] T.G. Weldemhret et al. /Progress in Organic Coatings 161 (2021) 106480

Non-flammable

^[3] T. G. Weldemhret et al. /ACS Appl. Nano Mater. 2022, 5, 9, 12464–12476

^[4] T. G. Weldemhret et al. /Adv. Mat. Inter. 2023, (in press)

GNP/PUF composite fabrication process

Coating characterization

Digital images of neat and coated PUF

Water stability of the coatings

SEM images of (A) neat and (B) coated PUF

FR properties: MCC and CC tests

Fig. (A) MCC HRR curve, (B) CC HRR curve, (C) ARHE, (D) THR, I RSR, (F) TSR, (G) TSP, (H) CO2P, and (I) COP. The average value was used for plotting all curves (n = 2).

Piezoresistivity: Qualitative evaluation

Video. A circuit constructed with the GNP@PUF foam, revealing the brightness of LED changes with the compression/stretching and release of the conductive GNP@PUF.

Piezoresistivity: Quantitative evaluation

Compress Stretch Pressure Pressure Electron> Conducting paths Overlapped GNPs: Short Reduced overlapping: Further reducing overlapping: Long conducting paths Broken paths conducting paths

Original state ($\varepsilon = 0\%$)

A Compression ($\epsilon = -60\%$)

Fig. (A) Experimental setup for the pressure sensor characterization. Schematic showing the circuit diagram of GNP@PUF under (B) compressive and (C) stretching mode. (D) Key performance evaluation

Fig. Schematic illustration of the sensing mechanism of the GNP@PUF sensor under compression and stretching sensing modes.

Stretching ($\epsilon = +50\%$)

Sensor characterization

Fig. (A) The GNP@PUF pressure sensor, (B) Sensor response vs. strain, (C) correlation between resistance and strain, (D) calculated gauge factor for different compressive strains, and (E) correlation between resistance and pressure under compressive mode. (F-J) correlation between resistance and strain under stretching mode.

Sensor response time and durability

Fig. (A) Response time and (B) stability of the pressure sensor.

Human motion monitoring

Fig. Monitoring of various human motions using the GNP@PUF sensor.

Application in EMI shielding

Fig. (A, B) Experimental setup for EMI shielding measurements: vector network analyzer with the waveguide. (C) EMI shielding mechanism of the foam. (D) Key parameters for evaluating the EMI shielding performance of the foam.

(i) Coefficients of shielding mechanism $R = \frac{P_{ref}}{P_i} = |S_{11}|^2 = |S_{22}|^2$ $T = \frac{P_t}{P_i} = |S_{12}|^2 = |S_{21}|^2$ $A = \frac{P_{abs}}{P_i} = 1 - R - T$

(ii) EMI shielding effectiveness (SE)

$$SE_{ref} = -10\log(\frac{1}{1-R})$$

$$SE_{abs} = -10\log(\frac{1-R}{T})$$

$$SE_{total} = 10 \log(\frac{P_i}{P_t}) = SE_{ref +} SE_{abs}$$

EMI shielding performance

Fig. EMI shielding performance of the foams at a frequency range of 8-12.5 GHz. (A) SE total, (B) effect of thickness, (C) SE reflection, and (D) SE absorption for GNP@PUF.

Conclusions

Acknowledgments

Prof. Jung-Il Song
Prof. Yong Tae Park
Dr. M. N. Prabhakar
Dr. Dong-Woo Lee

