

Mechanical Properties of Carbon Nanotube Composite Film Under High-Velocity Impact

Mr. Wenqi Wang

Supervisors: Dr. Wei Tan, Prof. Vassili Toropov

School of Engineering and Materials Science, Queen Mary University London, London, E1 4NS, UK

ICCM23, Belfast, 30th July-4th August 2023

Presentation Outline

Motivation Research Methods

Results & Discussion

Background: Carbon Fibre Composites

Disadvantages

• Low Electric Conductivity

• Low Thermal Conductivity

But what if we need a multi-functional material...

Carbon Nanotubes (CNT)

• High electric/thermal conductivity with low density.

(C)

Figure 1. CNT Micro-structures: (a).Single-walled zigzag carbon nanotube. (b).SEM image of carbon nanotube bundles. (c).AFM image of a single-walled carbon nanotube.

(Carbon Nanotubes – Wikipedia, https://en.wikipedia.org/wiki/Carbon_nanotube)

Table 1. Companson of CENT/ONT/Metal III Different Properties.						
	CFRP	CNT	Metal			
Density	Low	Low	High			
Mechanical Properties	High	Relatively High	High			
Orientation	Anisotropic/I sotropic	Anisotropic	Isotropic			
Electric Conductivity	No	High	High			
Heat Conductivity	Low	High	High			

Table 1. Comparison of CFRP/CNT/Metal in Different Properties.

Problem: Impact Resistance

• The majority of the advanced application areas involving Carbon Nanotubes (CNTs) are highly susceptible to impacts.

• The research on the impact resistance of CNTs is relatively limited and not well-explored.

• This research mainly focus on the impact resistance properties of CNT film.

Presentation Outline

Results & Discussion

CNT Film Mechanical Properties

- The mechanical properties of CNT composite vary with different epoxy volume fraction.
- CNT film and CNT-epoxy composite both show a strong anisotropy.

Impact Test System

• There exists friction between sample and magnetic clamp.

Finite Element Modelling

- The impactor, frame and magnetic clamp are modelled as rigid body.
- Pressure applied in the ring to create the friction.
- Friction coefficient f = 0.2 applied in all surface contact.

Constitutive models

Model	Elastic	Plastic	Damage Property	Applied in
Iso-Non damage Model	Isotropic Elastic	Isotropic Plastic	Non	Indentation
Iso-Damage Model	Isotropic Elastic	Isotropic Plastic	Ductile Damage + Displacement Damage Evolution	Indentation /Impact
Aniso-Non damage Model	Anisotropic Elastic (Engineering Constants)	Isotropic Plastic + Potential	Non	Indentation
Aniso-Damage Model	Anisotropic Elastic (Engineering Constants)	Isotropic Plastic + Potential	Ductile Damage + Displacement Damage Evolution	Indentation /Impact

Presentation Outline

Quasi-static Indentation

Epoxy can improve the indentation resistance of CNT-epoxy composite.
The improvement shows more significant with the increase of epoxy fraction.

 γ_{12}

Indentation Simulation

• Stress distribution: concentric circles.

• Stress distribution: Butterfly shape – parallel to the fibre direction. 12

Indentation Simulation

• Penetration time: 1 s

• Penetration time: 1.2 s

Indentation Simulation

Remarks:

- The indentation resistance performance of CNT-epoxy composite increases with the increasing epoxy fraction.
- Compared with isotropic model, the anisotropic model shows stress concentration parallel to the CNT direction.
- The anisotropic model shows less indentation resistance than isotropic model.

High Velocity Impact of CNT film

High Velocity Impact Simulation of CNT film

High-velocity Impact Simulation

• Penetration time: 0.72 ms

• Penetration time: 0.99 ms

High-velocity Impact Simulation

• Penetration time: 0.93 ms

• Penetration time: 1.23 ms

Impact Simulation

Remarks:

- Compared with isotropic model, the anisotropic model shows stress concentration parallel to the CNT direction same with indentation.
- The maximum deformation before penetration and the reaction force both increase with the increase of impact velocity.
- The anisotropic model shows less impact force resistance than isotropic model, but more deformation before penetration.

Summary

- Epoxy can significantly improve the tensile mechanical property and impact resistance of CNT-epoxy composite, only when it large than CNT fraction ($f_e > 0.5$).
- The stress distribution of anisotropic material in indentation/impact is similar, which the critical area (maximum stress) distribute wider along the fibre direction (main direction).
- The anisotropic model shows less force resistance but more deformation before penetration than isotropic model, both in indentation and impact conditions.

Future Work

- Improve the impact test monitor method to collect details and data of CNT performance in high velocity impact process.
- Improve the simulation model to get more accurate simulation of CNT film resistance performance on indentation/impact situation.
- Explore the potential specific applications of CNT film/composites in academic and industry field.

Thank you for your attention!

C Key references:

[1] O'Masta, M. R., Russell, B. P., & Deshpande, V. S. (2017). An exploration of the ballistic resistance of multilayer graphene polymer composites. Extreme Mechanics Letters, 11, 49–58.

[2] Yi, M., & Shen, Z. (2015). A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A, 3(22), 11700–11715.

Contact: Wenqi Wang (Wenqi.wang@qmul.ac.uk)