

High performance flexible piezoresistive sensor with graft-copolymerized composites

Zongrong Wang, Associate professor, Ph.D supervisor (王宗荣, 副教授, 博士生导师)

School of Aeronautics and Astronautics

State Key Lab of Silicon and Advanced Semiconductor Materials

Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province

Center for X-Mechanics

zrw@zju.edu.cn, 183-2915-1616

Example from Research group –flexible pressure sensor

The pressure sensing mechanism and application

Pressure sensing mechanism:

High resolution

... ...

Curved surface or narrow space (such as inside eye), special shape materials and devices are required!

Three most widely reported piezoresistive materials

2D, sensitive, narrow sensitive regime

2-2 composite, sensitive, Young's modulus mismatch

(c)

(0,1,2)-3 composite, sensitive regime and reliability Easy to deform fastly, easy to achieve high sensitivity

The problems of widely reported pressure sensor

- (1) The relaxation is obvious, hard to get stabilized
- (2) Creep or even plastic deformation
- (3) Young's modulus mismatch
- (4) Trade off between sensitivity and stability (

5

Whether the process can be regarded as a relaxation process depends on observation time

- 1) Relaxation time $\tau \ll$ observation time —— transient processes;
- 2) Relaxation time $\tau \approx$ observation time —— relaxation processes ;
- 3) Relaxation time $\tau >>$ observation time —— relaxation is hard to occur;

How to avoid relaxation of segments:

1) energy2) space;(determined by temperature)(free volume)

Methods: Principles of relaxation and creep

The polymer with higher Tg, higher modulus, longer relaxation time and higher stability could be achieved.

But, lower sensitivity and plastic deformation

How to enhance sensitivity on the basis of stability???

Typical creep curve

When compressed, three kinds of deformation might occur simultaneously:

- Viscoelastic ε₂ : entropy derived,
- Plastic E₃: permanent and irreversible

The total deformation:

 t_2

 ϵ_1

 ϵ_2

ε3

 ${oldsymbol {\mathcal E}}$

0

$$\varepsilon = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 = \sigma_0 \left[\frac{1}{E_1} + \frac{1}{E_2} (1 - e^{-t/\tau}) + \frac{t}{\eta_3} \right]$$

Design a piezoresistive composite with high Young's modulus, without ε_3 or even ε_2 , Fast response, high stability, how about high sensitivity?

The design of high Tg graft-copolymerized composite

1. Stability: extend relaxation time

1). matrix: high Tg₁

2). semiconductor: high Tg₂

2. Sensitivity: increase the active site

large specific surface area matrix+ grating nanostructure

The key: strong interfacial bonding, thermodynamic compatibility and form high Tg composite

$$\frac{1}{T_g} = \frac{1}{\omega_1 + B\omega_2} \begin{bmatrix} \omega_1 & B\omega_2 \\ T_{g1} & T_{g2} \end{bmatrix}$$

The thermodynamic compatibility of the copolymer, one Tg.

The design of high Tg matrix

Strong interface bonding

Strong interface bonding, high stress transfer efficiency

The design and construction of the pressure sensor

The key parameters of the pressure sensor

Sudden infant death syndrome

Flexible pressure sensor based on PLA-PANI

Flexible pressure sensor based on PLA-PANI

Flexible pressure sensor based on PLA-PANI

Flexible pressure sensor array based on PAI-PANI

In preparation

Flexible pressure sensor array

Inside of the tube

Realtime display of Pressure data

21

Push

Pipe

Water pressure detecting application

- Water should be poured into kidney
- > High pressure will cause damage
- > The pressure cannot be detectable in-situ

Soft ureteroscope to measure water pressure

Flexible pressure sensor based on PES/TPU-PPy

Flexible pressure sensor based on PES/TPU-PPy

In preparation

Decreased signal drift and hysteresis with high Tg matrix

Improved the stability using strong interfacial bonding (MD simulation and experiments)

□ Prohibited the movement of fibers via nanostructure interlocking enabled by

PAMD nanostructured electrodes

Developed a wireless respiration monitoring system

Acknowledgement

Thanks for listening!

