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❖ Introduction

➢ Composite failure modes

• Fibre breakage

• Fibre kinking

• Matrix cracking

• Fibre/matrix debonding

• Delamination   

➢ Multiaxial loading problems

• Damage initiation

• Damage propagation

• Damage mode interaction

➢ Failure criteria

• Maximum stress Criterion

• Tsai-Wu criterion 

• Hashin criterion

• Puck criterion

• LARC05

• ……

Failure criteria comparison under triaxial loading conditions 

from World Wide Failure Exercise – II (Kaddour et al. 2013)
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3D X-Ray micro-CT image of kink bands and associated damage 

mechanisms under longitudinal compression(Wang et al. 2017)
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❖ 3D high-fidelity micromechanical modelling

➢ Representative volume elements (RVEs)
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Transition zone Transition zone 
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➢ Constitutive model of constituents

❖ 3D high-fidelity micromechanical modelling

• Fibres 

• Matrix 

• Fibre/matrix interface

Cohesive surface

Original cohesive zone model Friction effect under compression

Transversely isotropic, assumed to be elastic.

Φ 𝐼1, 𝐽2, 𝜎𝐼 , 𝛽, 𝛼 =
1

1 − 𝛼
3𝐽2 + 𝛼𝐼1 + 𝐵 𝜎𝐼 − 𝜎𝑚𝑦𝑐 = 0

𝐼1 stands for the first invariant of the stress tensor,

𝐽2 is the second invariant of the deviatoric stress tensor, 

𝛼 is the pressure-sensitivity parameter of the Drucker-

Prager yield criterion, 

𝜎𝐼 is the maximum principal stress.

Drucker-Prager plastic damage model
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• Brittle failure in uniaxial tension

• Plastic behaviour in compression/shear

• Influence of hydrostatic stress on the mechanical 

behaviour of polymer under multiaxial stress states

Shear stress under transverse compression
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➢ Definition of voids

❖ Definition of voids and kink-band

Kink-band width: 𝑤 =
𝑤𝐴+𝑤𝐵+𝑤𝐶

3
Fibre rotation angle: 𝛽

➢ Definition of kink-band width and fibre rotation angle

Three types of voids (type Ⅰ, type Ⅱ and type Ⅲ) in 3D RVE 

models with φ0=5°, fv=3%.
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❖ Numerical results under uniaxial longitudinal compression considering voids

• Initial fibre waviness angle has significant influences on the longitudinal compressive modulus and failure strength.

• Volume fraction and type of voids have insignificant effects on the longitudinal compressive modulus and strength. 

➢ Influences of initial waviness angle and voids on the prediction of modulus and strength of composites
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❖ Numerical results under uniaxial longitudinal compression considering voids

• Kinking phenomenon disappears when 𝛷0 ≤ 1° as the failure mechanism is fibre failure

• In-situ kink-band width increases as the initial fibre waviness angle 𝛷0 or volume fraction of voids increases 

• The type of voids has insignificant effects on the in-situ kink-band width

• The volume fraction of voids does not influence fibre rotation angles at peak loads

➢ Influences of uncertainties on in-situ kink-band width ➢ Influences of uncertainties on fibre rotation angle
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• Initial fibre waviness angle has insignificant influences on the final failure of composites under longitudinal compression

➢ Influences of the initial waviness angle on the failure of composites with fv=3% and Type I

❖ Numerical results under uniaxial longitudinal compression considering voids

Tensile damage in matrix Shear stress distribution in matrix  

𝛷0= 3°

𝛷0= 4°

𝛷0= 5°

𝛷0= 3°

𝛷0= 4°

𝛷0= 5°
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• The volume fraction of voids has significant effects on the damage initiation and propagation in the matrix

• The existence of voids has effects on the distribution of shear stress in the matrix 

➢ Influences of the volume fraction of voids on the failure of composites with 𝛷0= 3° and Type I

❖ Numerical results under uniaxial longitudinal compression considering voids

Tensile damage in matrix Shear stress distribution in matrix  

fv=0%

fv=1%

fv=3%

fv=5%

fv=0%

fv=1%

fv=3%

fv=5%
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• Damage easily initiates and propagates from the larger voids in the matrix

• The size of voids can influence the distribution of shear stress in the matrix

➢ Influences of the type of voids on the failure of composites with 𝛷0= 3° and  fv=3%

❖ Numerical results under uniaxial longitudinal compression considering voids

Tensile damage in matrix Shear stress distribution in matrix  

Intact model

Type I

Type II

Type III

Intact model

Type I

Type II

Type III
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Shear stress 0 9.4 18 37 45 54 61 64 70 74

Failure point (MPa) (1209,0) (1171,9.4) (1106,18) (974,37) (859,45) (768,54) (691,61) (620,64) (567,70) (522,74)

Kink-band width (μm) 150 135 - - - - - - - -

Fibre rotation angle 12° 14° 16° - - - - - - -

❖ Failure prediction under combined longitudinal compression and in-plane shear

• In-situ kink-band width decreases as in-plane shear stress 

increases and disappears when the stress exceeds 18 MPa

• In-plane shear stress facilitates the fibre rotation under combined 

loading conditions when the stress is not larger than 18 MPa

• Hashin and Tsai-Wu failure criteria overestimate the failure 

strength under biaxial loadings while the LaRC05 failure 

criterion underestimates the strength. 

• Sun Failure criterion has a better agreement with the failure 

strengths obtained from numerical simulations mainly due to its 

consideration of the initial waviness angle of fibres. 

➢ Failure strength prediction of composites and failure criteria comparison
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𝜏 = 9.4MPa

𝜏 = 18MPa

𝜏 = 37MPa

𝜏 = 45MPa

𝜏12

𝜏12

➢ Failure analysis of composites under combined loadings

Uniaxial longitudinal compression 

Combined  longitudinal compression and in-plane shear

𝜎1

𝜎1

• In-situ kink-band shrinks and shifts to both sides when in-plane shear stress increases

• The failure of composites is triggered by the matrix tensile failure in the form of splitting

Tensile damage in matrix 
Shear stress distribution in matrix  



www.qub.ac.uk/sites/acrg

14

❖ Conclusions:

• 3D high-fidelity micromechanical models can predict the failure of unidirectional composite materials 

in great detail under uniaxial longitudinal compression.

• Manufacturing-induced uncertainties, such as the initial waviness angle of fibres and voids, have a 

significant influence on the failure prediction of composites. 

• In-plane shear stress influences the formation of kink bands and fibre rotation angle. 

• A new approach is proposed for the measurement of in-situ kink band width for numerical studies

• Conventional failure criteria were assessed based on the failure strength under combined longitudinal 

compression and inn-plane shear and the Sun failure criterion performs best due to the consideration 

of initial waviness angle.
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Thanks! Any question?
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