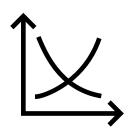


NOVEL PROCESSING ROUTE FOR PET-GF COMPOSITE MANUFACTURING VIA SSP


O. Vetterli, G. A. Pappas, P. Ermanni Laboratory of Composite Materials and Adaptive Structures, ETH Zürich, 8092 Zürich, Switzerland.

Agenda

- Introduction
 - Thermoplastics Composites & challenges
 - Technology screen
 - o Background on SSP
 - SSP Processing & Interface advantages for composites manufacturing
- Characterization methods
- Workflow Overview
- Results
- Conclusion & Outlook

Introduction – TP Composites & challenges

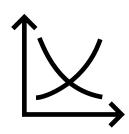
• Why Thermoplastic?

=

Price to performance ratio

Increased fracture toughness

Sustainability potential


- 1. J. L. Thomason, Glass fibre sizing: A review, Composites Part A: Applied Science and Manufacturing 127 (2019) 105619.
- 2. C. Schneeberger, J. C. Wong, P. Ermanni, Hybrid bicomponent fibres for thermoplastic composite preforms, Composites Part A: Applied Science and Manufacturing 103 (2017) 69-73.
- 3. N. Aegerter, A. Luijten, D. Massella, P. Ermanni, Production of highly concentrated commodity thermoplastic np suspensions with 3d printed confined impinging jet mixers and efficient downstream operations, Powder Technology 410 (2022) 117835

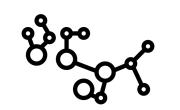
Introduction – TP Composites & challenges


• Why Thermoplastic?

Ţ

Price to performance ratio

Processing challenges:



Dissolution in solvents:

- Expensive
- Compatibility
- Sustainability

Increased fracture toughness

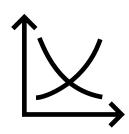
In-situ reaction:

- Time consuming
- By-products
- Demanding conditions

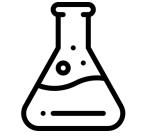
Sustainability potential

1. J. L. Thomason, Glass fibre sizing: A review, Composites Part A: Applied Science and Manufacturing 127 (2019) 105619.

CMASLab


- 2. C. Schneeberger, J. C. Wong, P. Ermanni, Hybrid bicomponent fibres for thermoplastic composite preforms, Composites Part A: Applied Science and Manufacturing 103 (2017) 69-73.
- 3. N. Aegerter, A. Luijten, D. Massella, P. Ermanni, Production of highly concentrated commodity thermoplastic np suspensions with 3d printed confined impinging jet mixers and efficient downstream operations, Powder Technology 410 (2022) 117835

Introduction – TP Composites & challenges


• Why Thermoplastic?

Ţ

Price to performance ratio

Processing challenges:

Dissolution in solvents:

- Expensive
- Compatibility
- Sustainability

Increased fracture toughness

In-situ reaction:

- Time consuming
- By-products
- Demanding conditions
- Matrix Fibre interaction:

٠

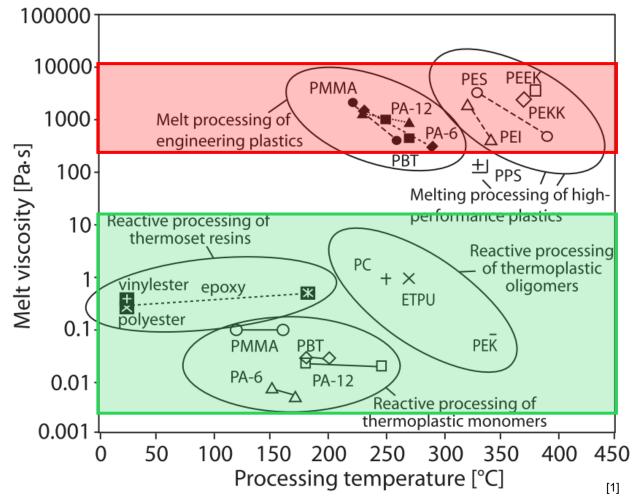
•

Sustainability potential

 \bigcap

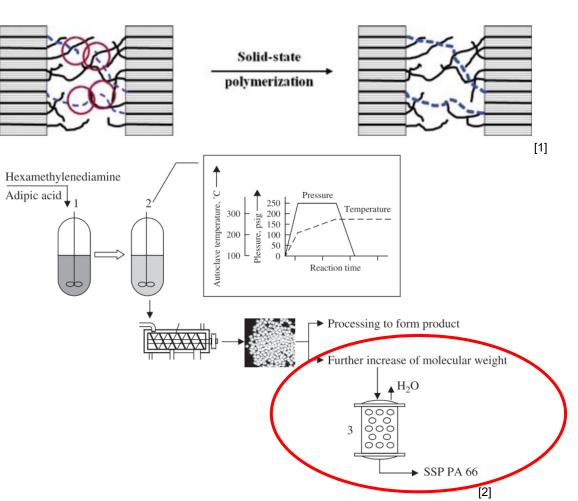
Weak link:

- $\sigma_{\text{interface}}$ < Yield
- Sizing not optimized for TP
- No covalent bond VdW


- 1. J. L. Thomason, Glass fibre sizing: A review, Composites Part A: Applied Science and Manufacturing 127 (2019) 105619.
- 2. C. Schneeberger, J. C. Wong, P. Ermanni, Hybrid bicomponent fibres for thermoplastic composite preforms, Composites Part A: Applied Science and Manufacturing 103 (2017) 69-73.
- 3. N. Aegerter, A. Luijten, D. Massella, P. Ermanni, Production of highly concentrated commodity thermoplastic np suspensions with 3d printed confined impinging jet mixers and efficient downstream operations, Powder Technology 410 (2022) 117835

Introduction - Technology screen

- What is needed?
 - $\circ~$ Ease of processing \rightarrow Low MW (low $\eta)$
 - $\circ~$ High performance \rightarrow High MW (high $\eta)$
- How do we get that?
 - Reactive Processing of Monomers
 - \rightarrow Too slow & demanding conditions
 - Particle suspension
 - \rightarrow Complex set up & solvents
 - Liquid crystal polymer (LCP)
 - \rightarrow Still to viscous &/or need solvents
 - **o** Solid State Polymerisation



1. Van Rijswijk, K., and H. E. N. Bersee. "Reactive processing of textile fiber-reinforced thermoplastic composites–An overview." *Composites Part A: Applied Science and Manufacturing* 38.3 (2007): 666-681.

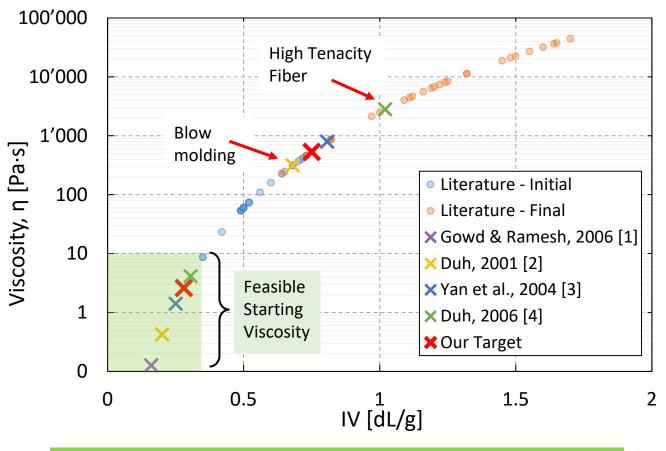
What is SSP?

• Polycondensation polymers \rightarrow PAs, Polyesters (PET)

- MW increase in the Solid State
 - \circ Mild conditions T_g < T < T_m
 - $\circ~$ Between amorphous regions
 - \circ By-products: H₂O and EG
- Potential advantages for composites?
 - **o** Processability & Sustainability
 - Interface improvement

1. Solid State Polymerisation, by C.D. Papaspyrides & S. N. Vouyiouka, Book

2. Handbook of Thermoplastics by Olagoke Olabisi, Kalopo Adewle, Book

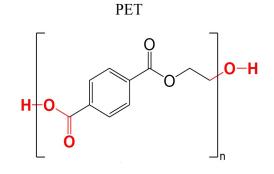


SSP for composite application – processing advantages

• Impregnation speed

F

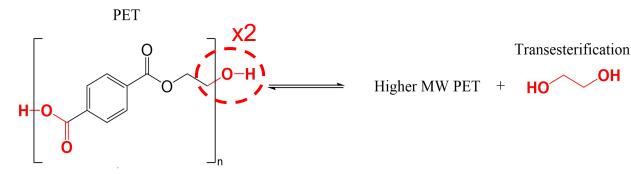
- Commercial product η : 400 -3'000 Pa·s
- o Our aim 1-10 Pa·s
- Substantial time saved
- Composite quality \rightarrow **practically void-free**
- No solvent, nor other chemicals
- · Reaction in the solid state
 - $\circ~$ Recover & improve mechanical properties
 - **Off-line & bulk** \rightarrow "drying stage"
- Literature:
 - Feasibility on pure polymer proved
 - o All reached commercial grade quality


Impregnate TP like TS — Efficient & high-quality

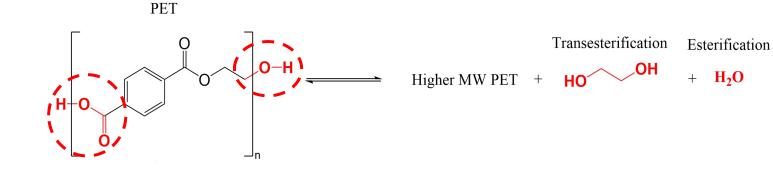
- 1. Gowd, E. Bhoje, and C. Ramesh. "Effect of poly (ethylene glycol) on the solid-state polymerization of poly (ethylene terephthalate)." Polymer international 55.3 (2006): 340-345.
- 2. Duh, Ben. "Reaction kinetics for solid-state polymerization of poly (ethylene terephthalate)." Journal of applied polymer science 81.7 (2001): 1748-1761.
- 3. Yan, Weixia, et al. "Study on long fiber-reinforced thermoplastic composites prepared by in situ solid-state polycondensation." Journal of applied polymer science 91.6 (2004): 3959-3965.
- 4. Duh, Ben. "Effects of crystallinity on solid-state polymerization of poly (ethylene terephthalate)." Journal of applied polymer science 102.1 (2006): 623-632.

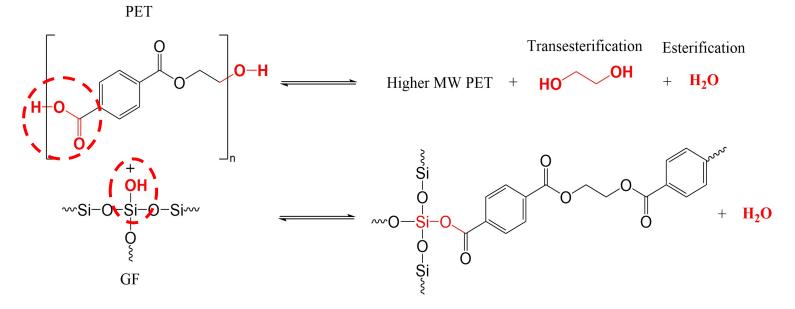
ETH zürich CMASLab

- Chemical groups involved in SSP can react with GF surface
 - $\circ~$ Covalent bond between GF-PET
 - Stronger interface


=

- Chemical groups involved in SSP can react with GF surface
 - Covalent bond between GF-PET
 - Stronger interface


F


- Chemical groups involved in SSP can react with GF surface
 - Covalent bond between GF-PET
 - Stronger interface

=

- Chemical groups involved in SSP can react with GF surface
 - Covalent bond between GF-PET
 - Stronger interface

F

Matrix-fiber form a covalent link \rightarrow Stronger bonds than with sizing solution

Ţ

- Processing \rightarrow Melt viscosity (η)
 - $\circ~$ Rheology, measure complex shear \rightarrow get η_0
 - $_{\odot}~$ At processing Temperature (> T_{\rm M})
 - Measured in [Pa*s]
 - Only on pure polymer

F

- Processing \rightarrow Melt viscosity (η)
 - $\circ~$ Rheology, measure complex shear \rightarrow get η_0
 - $_{\odot}~$ At processing Temperature (> T_{\rm M})
 - Measured in [Pa*s]
 - Only on pure polymer
- Polymer Industry \rightarrow Intrinsic viscosity (IV)
 - Via capillary viscometer, Cannon-Feske
 - $\circ~$ Measure flowing time of dilute solution
 - Measured in [dL/g]

 $[\eta] = K * M^{\alpha}_{\mu\nu}$

- Shear viscosity: $K = 3.2 * 10^{-14}$, $\alpha = 3.5$
- Intrinsic viscosity : $K = 7.4 \times 10^{-4}$, $\alpha = 0.648$

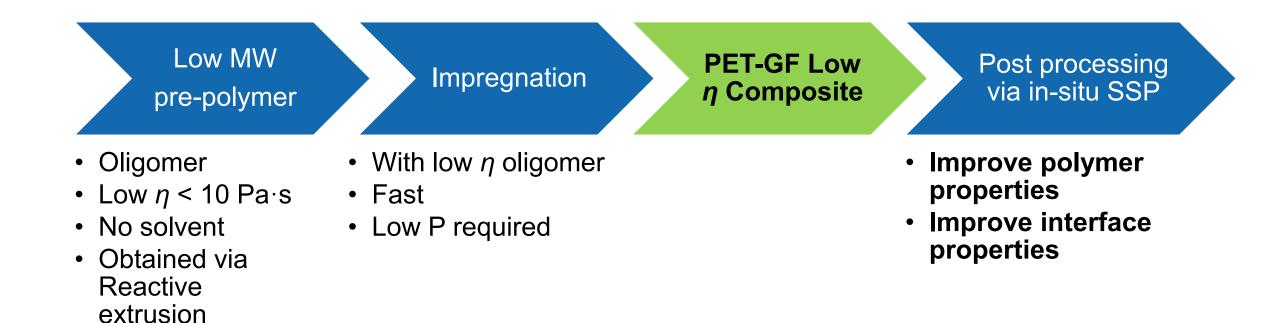
F

- Processing \rightarrow Melt viscosity (η)
 - Rheology, measure complex shear → get η_0
 - $_{\odot}~$ At processing Temperature (> T_{\rm M})
 - Measured in [Pa*s]
 - Only on pure polymer
- Polymer Industry \rightarrow Intrinsic viscosity (IV)
 - $\circ~$ Via capillary viscometer, Cannon-Feske
 - $\circ~$ Measure flowing time of dilute solution
 - \circ Measured in [dL/g]

- Polymer science \rightarrow MW distribution
 - Via Gel Permeation Column (GPC)
 - $\circ~$ Actual measurement of MW, not correlation
 - $\circ~$ Measure distribution polymer \rightarrow quality

$$[\eta] = K * \overline{M_w^{\alpha}}$$

- Shear viscosity: $K = 3.2 * 10^{-14}$, $\alpha = 3.5$
- Intrinsic viscosity : $K = 7.4 \times 10^{-4}$, $\alpha = 0.648$

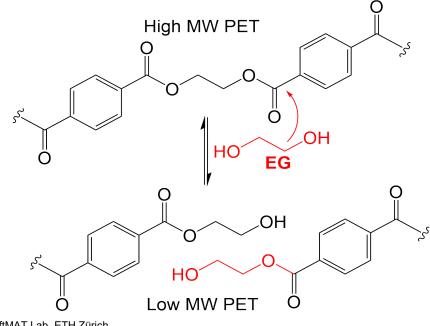

Ţ

- Processing \rightarrow Melt viscosity (η)
 - Rheology, measure complex shear → get η_0
 - $_{\odot}~$ At processing Temperature (> T_{\rm M})
 - Measured in [Pa*s]
 - Only on pure polymer
- Polymer Industry \rightarrow Intrinsic viscosity (IV)
 - $_{\odot}~$ Via capillary viscometer, Cannon-Feske
 - $\circ~$ Measure flowing time of dilute solution
 - Measured in [dL/g]

- Polymer science \rightarrow MW distribution
 - Via Gel Permeation Column (GPC)
 - $\circ~$ Actual measurement of MW, not correlation
 - $\circ~$ Measure distribution polymer \rightarrow quality

	IV [dL/g]	Melt <i>ղ</i> [Pa*s]	MW _w [kg/mol]
High-end Commercial grade	1.1 – 1.2	3'500 – 6'000	78 – 90
Average Commercial grade	0.7 – 0.73	350 – 450	39 – 41
Our initial grade aim	0.25 – 0.35	1 – 10	8 - 13,5

TP-GF Composite Manufacturing via SSP- Workflow


ETH zürich CMASLab

F

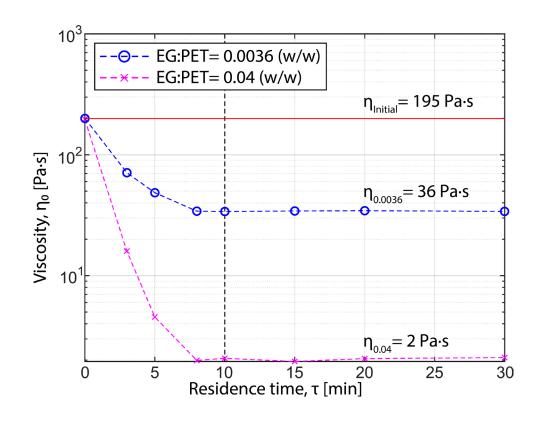
Reactive extrusion - Process

- Many depolymerization options \rightarrow Glycolysis
- PET + EG (co-monomer) \rightarrow Oligomer
- Tune ratio EG/PET to achieve different η
- Heat & Mixing \rightarrow Twin screw extruder

CMASLab

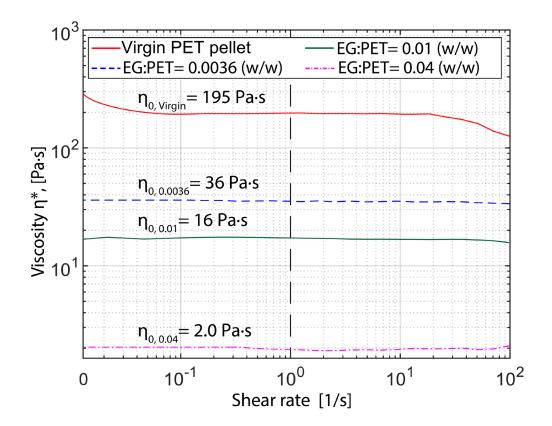
1. SoftMAT Lab, ETH Zürich

F


Condition	VPET	HIGH η	MEDIUM η	LOW η
EG:PET ratio	0	0.0036	0.01	0.04
η [Pa*s]	195	36	16	2

F

Reactive extrusion - Results


- <10 min of reaction time for all the grades
- No further degradation within 30 min

CMASLab

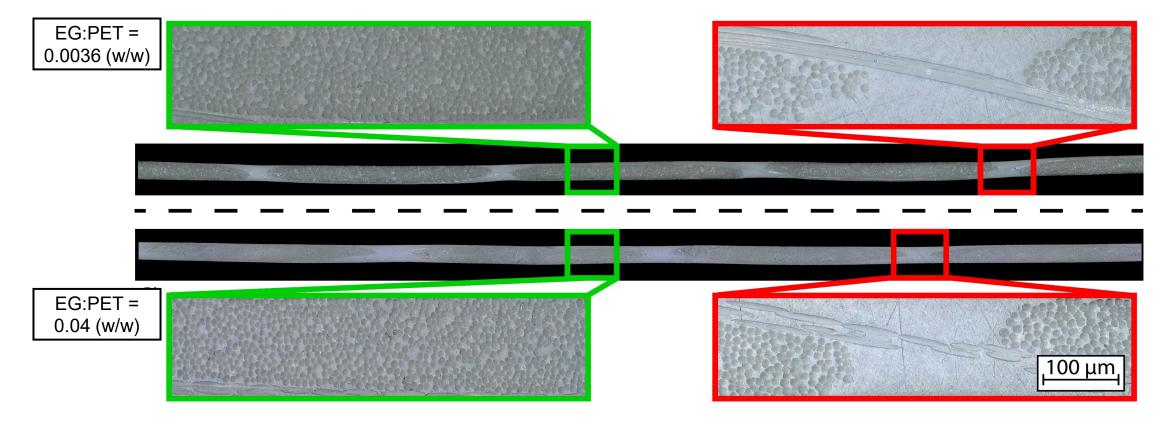
ETH zürich

- Easy to produce a wide range of viscosities
- Low $\eta \rightarrow$ Newtonian fluid behavior
- Homogeneous reaction \rightarrow no high MW chains


22

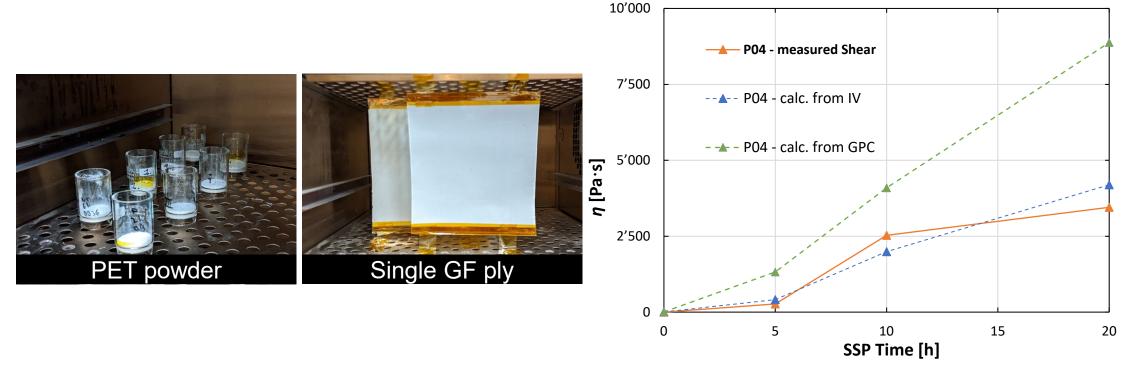
Impregnation – Process

- High temp. compression molding under vacuum
 - Process temperature: 270°C
 - \circ Process pressure: 2 4 Bar


- On single ply \rightarrow not diffusion limited
- GF textile: UD 200 gsm
- Composite with ~ 50% FVF

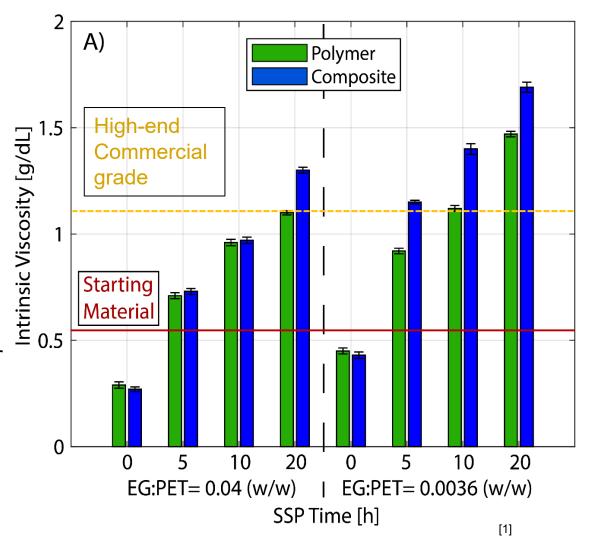
Impregnation – Results

- Very low pressure required
- Low viscosity \rightarrow opposite problem of TP


- Practically voidless
- Textile structure maintained

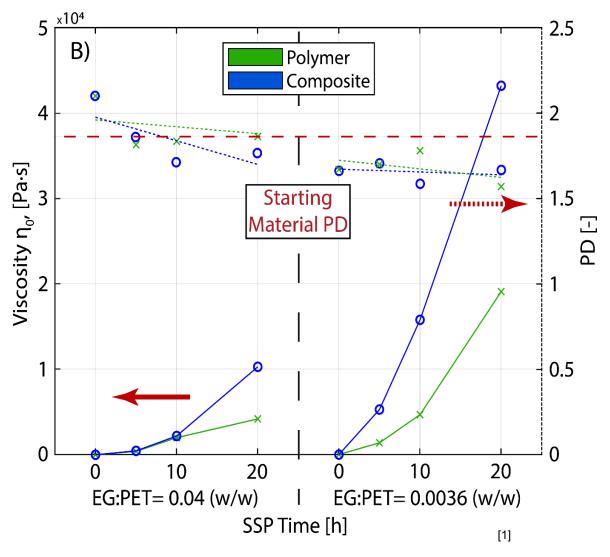
Solid State Polymerisation - Process

- Flushing N_2 oven \rightarrow to remove by-products
- Up to 20h of reaction \rightarrow to monitor η vs t
- Single ply & powder \rightarrow shortest path for diffusion
- Powder \rightarrow correlation η & IV & GPC


- Correlation:
 - Process variable → η
 - $\circ~$ All correlated via MW
 - \circ IV ↔ η most precise & easy to measure

F

Solid State Polymerisation - Results


- < 5h starting material IV reached & exceeded
- < 20h IV of highest commercial grade exceeded
- Presence of fibre does not inhibit the reaction
- Due to the favorable geometry thin ply even faster

F

Solid State Polymerisation - Results

- η has a stronger dependency to MW (3.5 vs 0.65) ٠
- The reaction may further advance post 20h
- Virtually un-processable >40'000 Pa·s ٠
- Polymer quality increase with time (PD decrease) •

1. In collaboration with Dr. Daniel Lester, Haddleton Group, Warwick University **CMAS**Lab

F

27

Conclusions

- Step 1) Reactive extrusion
 - ✓ Fast and effective in 10 minutes the reaction is over
 - ✓ Can easily modify polymer viscosity w/o degradation from 2 to 40 Pa*s
- Step 2) Impregnation
 - \checkmark Can impregnate GF with minimal pressure maintaining textile shape and no voids
- Step 3) Composite level SSP
 - \checkmark The presence of fibre does not inhibit or slow down the reaction
 - \checkmark Quickly reach initial polymer quality and with longer time exceed highest commercial grades
 - $\checkmark\,$ Produce an improved quality polymer

Work in progress & Outlook

- Mechanical testing to identify
 - \circ Influence of the process on the polymer
 - $\circ~$ Influence of the process on the interface

• Even if the reaction is proceeding, is the interface improving too? I.e. when do we saturate the interface bonds?

• How much thicker can we manufacture plies via SSP while maintaining constant MW?

• What happens if GF is substituted with CF?

Thanks for your attention.

Vetterli Oliver

Doctoral Candidate by CMAS Lab

oliverve@ethz.ch

Acknowledgments:

- Dr. Lester Daniel, Haddleton Group, Warwick University
- Dr. Feldman Kirill, SoftMAT Lab, ETH Zürich

ETH zürich CMASLab