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Motivation
• Interested in simulating damage progression and energy absorption in 

large-scale composite structures up to failure 

• Development and implementation of efficient computational 
fracture/damage modelling methodologies within commercial FE software 
packages that can be readily used by industry 

• Applications of interest:
– damage-tolerant design of composite structures
– penetrating and non-penetrating impact events
– in-plane fracture of notched specimens
– energy absorption in crash events
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Matrix splitting
 in 0ᴼ plies

• Hallett, S.R. and Wisnom M.R., 2006. Journal of Composite Materials, 40(14), pp. 1229-1245.
• Li X, Hallett SR, Wisnom MR, Zobeiry N, Vaziri R, Poursartip A.. Composites Part A: Applied Science and 

Manufacturing. 2009;40(12):1891-9.

Damage Mechanisms
• Damage mechanisms and structural failure in composites are complex and 

depend on layup, loading scenario and geometry
• This complexity is a result of interplay between intra-laminar and inter-laminar 

damage modes
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Smeared Fracture Zone
vs. Localized Macroscopic Cracks
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• Zobeiry, N., Vaziri, R., Poursartip, A. 2015.  Compos. Part A-Appl. S., 68(0): 29-41. 
• Li, X., Hallett, S.R., Wisnom, M.R., Zobeiry, N., Vaziri, R., Poursartip, A. 2009.  

Compos. Part A-Appl. S., 40(12): 1891-1899.

• Form and extent of damage mechanisms are strongly influenced 
by laminate layup
Blocked-ply quasi-isotropic 
IM7/8552 CFRP laminate 

[454/904/-454/04]s

Dispersed-ply quasi-isotropic 
IM7/8552 CFRP laminate 

[90/45/0/-45]4s

Damage zone  Saturated zone

Damage zone comprised of 
matrix cracks and fibre breakage 
with minor delamination

Extensive delamination 
zone bounded by matrix 
cracks and distinct splits
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Taxonomy of Computational Fracture and 
Damage Mechanics

Orthotropic Materials

Continuum Models

Smeared Crack 
Methods

Scalar Damage

Discrete Models

Remeshing

Cohesive 
Interface

Rotating Crack

Microplane

Isotropic Materials

Generalized Smeared 
Cracking 

Embedded Cracks

Partition of Unity 
Method (PUM)

X-FEM

Combined 
Continuum-

Discontinuous 
Approach

Embedded 
Discontinuity

Weak 
Discontinuity

Strong 
Discontinuity

Computational Fracture and 
Damage Mechanics 

Virtual Crack 
Closure 

Technique 
(VCCT)

• A. Forghani, M. Shahbazi, N. Zobeiry, A. Poursartip and R. Vaziri, Chapter 6, Numerical Modelling of Failure in 
Advanced Composite Materials,  Camanho, P.P. and Hallett, S. (Eds.), Woodhead Pub Ltd, 2015.

• J. Reiner, R. Vaziri , Structural Analysis of Composites with Finite Element Codes, Beaumont, P.W.R. and 
Zweben, C.H. (Eds.), Comprehensive Composite Materials II, Vol 8, pp. 61-84. Oxford: Academic Press, 2018



Focus of this talk
• Dispersed laminate layups are widely used in construction of practical 

composite structures
• For this class of problems, the nonlinear structural response up to failure as 

well as the bulk of energy absorption in impact/crash loading applications is 
dominated by fibre fracture

• Reliable simulations of such events depends on accurate representation of the 
progressive fracture behaviour of the laminate

• For efficient progressive damage and failure (PDF) analysis of large-scale 
structures, the laminate is typically represented using a single shell element 
through the thickness

• Several material models are available in commercial FE codes (e.g. LS-DYNA, 
Abaqus/Explicit) for PDF simulations and many benchmark studies have been 
undertaken (e.g. CMH-17 Crashworthiness Working Group) to evaluate their 
performance

• Successful simulations are based on material models with parameters that are 
calibrated using experiments that elicit the physics of the fracture process at 
the laminate level
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Strain-Softening Response
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Intra-laminar Damage: Continuum Approach
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• UBC Composite Damage Model (CODAM) 
• First introduced by Williams et al* (1998)
• Overall behaviour of sub-laminate is considered
• Damage is smeared over the repeating unit volume (sub-laminate)
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*K. Williams, Ph.D. Thesis, The University of British Columbia  (1998)
K. Williams, R. Vaziri, and A. Poursartip, Int. J. Solids & Struct., 40, 2267-2300 (2003) 



Progressive Damage – Physical Testing
Over-height Compact Tension (OCT) Test

F

PO
D

Damage 
Zone

Measurement 
Area

F

PO
D

Compact Compression (CC) Test

[90/45/0/-45]4s IM7/8552 CFRP

N. Zobeiry, R. Vaziri and A. Poursartip, ‘Characterization of Strain-Softening Behaviour and Failure Mechanisms of 
Composites under Tension and Compression’, Composites Part A, Vol. 68, 29-41, (2015)

0

200

400

600

800

0 0.02 0.04 0.06 0.08

S
tre

ss
 (M

P
a)

Average Strain

Tensile Strain 
Softening

-800

-600

-400

-200

0
-0.08-0.06-0.04-0.020

S
tre

ss
 (M

P
a)

Average Strain

Compressive Strain 
Softening



Calibration of CODAM2 – Nonlocal (MAT219 in LS-DYNA) 
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Notched coupon tests (OCT, CC) combined with the DIC technique, 
and inverse FE analysis are used to obtain damage initiation strain, ε i, 
damage height, hc, and fracture energy, Gf .
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N. Zobeiry, A. Forghani, C. McGregor, S. McClennan, R. Vaziri and A. Poursartip, ‘Effective Calibration and Validation of a 
Nonlocal Continuum Damage Model for Laminated Composites,’ Composite Structures, Vol. 173, pp. 188-195, (2017)



Calibration of CODAM2 - Assisted by High Fidelity FEA
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damage model parameters using a high fidelity finite element model, Composite Structures, Volume 256, 113073.
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Calibration of Strain-Softening Curves for LS-DYNA 
MAT81 (coupled plasticity-damage model)
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Calibration – Assisted by Machine Learning
• 4 neural networks (NN) in series (each NN has 4 hidden layers and 10 nodes per layer)
• High-level API in Python (version 3.6.8), Tensorflow (version 1.8.0) 
• FE: 1 simulation in 5 minutes
• ML: 10,000 simulations in 5 minutes 



Theory Guided Machine Learning (TGML)
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N. Zobeiry, J. Reiner, R. Vaziri (2020), Theory-guided machine learning for damage characterization of composites, Composite 
Structures, Volume 246, 112407.



Tensile Failure Characterization

Machine Learning

Digital Image Correlation
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Validation – Tension

Centre-notched Tensile tests*

Prediction of failure in centre-notched specimens 
using LS-DYNA MAT81 with properties obtained by 

the trained Neural Network from OCT tests

* Xu X, Wisnom MR, Li X, Hallett SR. A numerical investigation into size effects in centre-notched quasi-isotropic 
carbon/epoxy laminates. Compos Sci Technol 2015;111:32–9.



Compressive Failure Characterization

The inverse compressive failure problem is ill-posed:
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Compressive Failure Characterization

A recurrent neural networks with long short-
term memory architecture (LSTM) was trained 
to closely replicate FE but at much higher 
simulation speed:

– FE: 1 simulation / 5 minutes
– LSTM: 10,000 simulations / 5 minutes
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… …
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Reiner, J., Vaziri, R., & Zobeiry, N. (2021). Machine learning assisted characterization and 
simulation of compressive damage in composite laminates. Composite Structures, 273, 114290.



Compressive Failure Characterization

• Using fast LSTM model, 80,000 simulations were conducted in about half 
an hour. 

• Top 5 strain-softening curves were selected to minimize overall error in FE 
predictions for load-displacement of CC tests.

Reiner, J., Vaziri, R., & Zobeiry, N. (2021). Machine learning assisted characterization and simulation of compressive 
damage in composite laminates. Composite Structures, 273, 114290.



Validation – Open Hole Compression

Open-hole Compression*

Reiner, J., Vaziri, R., & Zobeiry, N. (2021). Machine learning assisted characterization and simulation of compressive 
damage in composite laminates. Composite Structures, 273, 114290.

* Lee J, Soutis C. Measuring the notched compressive strength of composite laminates: Specimen size effects. 
Compos Sci Technol 2008;68(12):2359–66



Validation – Tube Crushing

Reiner, J., Vaziri, R., & Zobeiry, N. (2021). Machine learning assisted characterization and simulation of compressive 
damage in composite laminates. Composite Structures, 273, 114290.

* Crashworthiness of Carbon Fiber Composites, Oak ridge national laboratory. URL:
http://energy.ornl.gov/CFCrush/rate_tests/rate_tests.cgi..



Calibration – Physics Informed Neural Network

𝒩𝒩 𝑢𝑢; 𝜆𝜆 = 𝑁𝑁𝐿𝐿𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝑜𝑜𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆 with parameters 𝜆𝜆 𝑆𝑆𝐿𝐿 𝑏𝑏𝑆𝑆 𝑃𝑃𝑐𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝐿𝐿
𝜃𝜃 = PINN 𝑜𝑜𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝐿𝐿 𝑏𝑏𝑆𝑆 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆−𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝐿𝐿

ℒ 𝜃𝜃 = ℒ𝑢𝑢 𝜃𝜃 + ℒ𝒩𝒩 𝜃𝜃𝑥𝑥
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PINN: methods in machine learning for incorporating the prior knowledge of the 
problem into the neural network (NN) algorithm so that minimal data is needed for 
its training 1.

Applications: 
• Forward problems - Solving ODEs and PDEs
• Inverse problems - Finding parameters of the ODEs/PDEs 

1 M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for 
solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys., 378, pp. 
686–707, (2019)



Application of PINN - Virtual OCT Test
FE simulations of OCT test used to generate synthetic DIC 
and global force data as “ground truth” data for material 
property identification.

Synthetically generated data used for PINN training consists 
of time histories of:
• displacement fields: 𝑢𝑢𝑚𝑚(𝑆𝑆),𝑢𝑢𝑦𝑦(𝑆𝑆)
• global force: 𝐹𝐹(t)

F
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Displacement field at t = 1 s

600 spatial data 
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Characterization Results - Elastic Constants

Predicted stress field along y direction at t = 1s over a small subdomain

Evolution of the elastic properties during training

Ground truth PINN predicted

Elastic parameters 𝐸𝐸, 𝜈𝜈 are identified using a timestep at early stages of loading

Temporal domain for 𝐸𝐸, 𝜈𝜈 



Characterization of Damage Parameters : A Pipeline Approach

Damage parameters 𝜎𝜎𝑖𝑖, ̅𝜖𝜖𝑝𝑝𝑠𝑠 are identified in two sequential training stages, 
using the timesteps sampled from the nonlinear response in the pre-peak 
and post-peak regimes.

In the nonlinear regime, localization is observed in FE simulations. A pipeline 
of networks is proposed to deal with localization:
1. A forward data driven NN is used to predict displacement and strain fields
2. An inverse PINN is used to extract damage parameters from the strain 

field predicted in step 1.



Characterization Results - Damage Parameters

Temporal 
domain for 
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Temporal 
domain for 

̅𝜖𝜖𝑝𝑝𝑠𝑠

Predicted stress and effective plastic 
strain at t = 5.5 s in the local zone 
(where 𝑥𝑥 ∈ [0,46] 𝐷𝐷𝐷𝐷,𝑦𝑦 = 0)

Predicted stress and effective plastic 
strain at t = 10 s in the local zone 
(where 𝑥𝑥 ∈ [0,46] 𝐷𝐷𝐷𝐷,𝑦𝑦 = 0)

Evolution of 𝜎𝜎𝑖𝑖  
during training

Evolution of ̅𝜖𝜖𝑝𝑝𝑠𝑠 
during training



Constitutive Model Characterized using PINN

Comparison of strain-softening curves: PINN-inferred vs. ground truth 
(i.e.input stress-strain curve used for FE simulation of OCT test)

Error (%) for key parameters of the strain-
softening constitutive response 

E. Haghighat, S. Abouali, R. Vaziri, Constitutive model characterization and discovery using physics-informed deep 
learning, Engineering Applications of Artificial Intelligence 120 (2023) 105828.33



Summary and Conclusions

30

• Simulation of progressive damage and failure response of composite 
materials/structures rely on sufficiently high quality experimental data that are 
used to quantify the input parameters of constitutive models, typically in the form 
of strain-softening curves

• Quality of the predictions depend largely on the accuracy of the constitutive 
model in representing the physical material behaviour which is driven more so by 
how well the model is characterized (calibrated) than the details incorporated in 
the constitutive model formulation

• Typically FE calibration approach is based on time consuming tests, complex data 
reductions, and trial-and-error FE analyses

• Theory-guided machine learning (TGML) and Physics-Informed Neural Networks 
(PINN) can be used effectively for inverse modeling and calibration of input 
parameters of FE models in a more objective manner 

• The combination of science-based simulation (FEA) and data-driven modelling 
(ML) when combined with robust statistical sampling techniques can enable large-
scale composite components to be analysed virtually considering inherent 
uncertainty of composites 
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