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The importance
of light-weighting
1n aviation
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The number of decommaissioned aircraft

Number of jets added to the global aircraft fleet from 1999 to 2021, by manufacturer (in New com merCIaI alrcraft 2022

units)* .
) = Airbus: 661
1.764 = Boeing: 542
(5 1.818i [ ]

o ‘ Predicted growth per annum 4.3% for the next 20 years [2]
2 -
5 : 1,171 [l . . .
;= - s = Estimated cummulative number of aircraft to be recycled
;o =l o7 ﬁ - o 0 [l between now and the year 2043 based on these numbers:

22,190 A
(assuming an average life span of 30 years)
FEE T T F TS T TS S S Current state of the art at end-of-life aircraft:
® Bocing @ Airbus & Bombardier @ Embracr @ Others = +10 weeks to process a decomissioned aircraft
SR warioussoutces Arous: acac:Soing: o, Vatoo sowees (Arus: Ascond: Scing: S b JADGS 199 10 221 1] - Only a limited number of parts is reused / recycled

= Most of the airframe is scrapped

TU D If.t [1] Statista, https://www.statista.com/statistics/622779/number-of-jets-delivered-global-aircraft-fleet-by-manufacturer/
e [2] International Civil Aviation Organisation (ICAQO), United Nations, Future of Aviation, https://www.icao.int/Meetings/FutureOfAviation/Pages/default.aspx



https://www.statista.com/statistics/622779/number-of-jets-delivered-global-aircraft-fleet-by-manufacturer/
https://www.icao.int/Meetings/FutureOfAviation/Pages/default.aspx

The and the growing number
of decommissioned aircraft require that the

paradigm that automatically
leads to of
should be
revisited.
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Variable Stiffness
Laminate Design

Using structural optimisation to compensate for
a reduction in mechanical properties




Variable Stiffness Laminate Design

Using in plane load redistribution to improve mechanical performance

Variable Stiffness

Fibre Steering SFVS

» Conventional » Custom
design methods optimization code » Scalable

» Single stacking » Continuously » Multiple discrete
sequence changing stiffness stacking sequences

Performance maximisation - Weight minimisation

T U D e I ft [1] J.M.J.F. van Campen, M. Gomaa and T. Roepman, Straightening out the adoption of Variable Stiffness Composite Laminates in the Aerospace Industr;y,
Proceedings of the 20th European Conference on Composite Materials, ECCM20, Lausanne, Switzerland, June 26-30, 2022



Life Cycle Metrics

Integration in Lamination Parameter space
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Using lamination parameters

(V& VA VA V) = i (cos 26, sin 26, cos 46, sin 40) dz

N

(\GAZGAGAZS) :4/2 Z (cos 26, sin 20, cos 40, sin 40) dz

D=
N[

(VlD,%D,%D,‘QD) = 12/ Z2 (cos 26, sin 26, cos 40, sin 46) dz

N

Recycled material Reduced strength Constraints in LP-

& stiffness
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a) Carbon/PEEK (AS4) - Tension b) Carbon/Epoxy (IM6) - Compression ¢) Boron/Epoxy (B5.6) - Compression

I U D e I ft [1] S.W. Tsai, and H.T. Hahn, Introduction to Composite Materials, Technomic Publishing Co., Inc., 1980.

[2] S.T. l[Usselmuiden, M.M. Abdalla, and Z. Giirdal, Implementation of Strength-Based Failure Criteria in the Lamination Parameter Design Space, AIAA Journal, 46, 2008, pp. 1826 — 1834,
(doi: 10.2514/1.35565)
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Demonstration of Concept

Case study: simply supported uniaxially compressed plate



Simply supported uniaxially compressed plate

Ebc = Wpr ] EbPM + WfRF ® EbRF

SS
o S _ Mmem
™ MR + Mpy
CcC CcC 400mm
MRg
n fopr = —m8m8——
y [ ] WIRp Mxp + Mg
SS

Ec = Erwc + Emc = Ebc o (IIlRF +IIIPM) + SECC (] (IIIRF +IIIPM)

— % 1
SE CSF VS — SE Cprocess Nyegions /a

Material Young’s Tensile Ebg SEC. Wpp E [MJ/kg] +  embodied energy of the composite (MJ/kg);
modulus Strength [MJ/kg] [MJ/kg] weight fractmn of polymer matrix (-); . .
emobodied energy of the polymer matrix (MJ/kg);
(GPa) (MPa) : weight fraction of reinforcement (-);
embodied energy of the reinforcement (MJ/kg);
Aluminium 70.1 324 - 38.6 - - 230/ 26.7* mpy:  mass of the polymer matrix (kg);
: mgrr:  mass of the reinforcement (kg);
Composite A 30.2 276 392 600 40 60 - Ec: overall energy of the composite component (MJ);
Composite B 212 115 184.8 79 40 60 - E™c:  energy embedded in the composite raw materials (MJ);
E"c:  energy needed to manufacture a composite component (MJ);

All values presented in this work are for demonstration purposes only. SECc: specific energy consumption of the manufacturing process (MJ/kg).

T U D e I ft " Recycled aluminium [1] V. Lunetto, M. Galati, L. Settineri and L. luliano, Sustainability in the manufacturing of composite materials: A 11
literature review and directions for future research, Journal of Manufacturing Processes, 85, 2023, pp.858 — 874,
(doi: https://doi.org/10.1016/ j.jmapro.2022.12.020)



Straight-Fibre Variable Stiffness Laminates

Continuous fibre angle variation Multi-patch laminate Straight-Fibre
Variable Stiffness
Laminate SFVS
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Results

I iN+IE

. . . I
Baseline aluminum panel, 2.0mm thick |

Buckling load

plane:
Manufacturing :
“® Parameterso

[kN]
5.5351 1.296

298.08 / 34.99

Glass fibre reinforced PEEK
Hand lay-up
Thermo forming

Carbon fibre reinforced PEEK
Laser assisted AFP
Autoclave

Composite A: Composite B:

Number of Weight E Number of
design regions [kg] [MJ] design regions
[ L]
a=2 a=4 a==6 a=8 a=2 a=4 a=6 a=8
1 1.142 1133.00 | 1133.00 | 1133.00 | 1133.00 1 1.593 420.22 420.22 420.22 420.22
9 0.999 2190.03 | 1429.94 | 1256.22 | 1180.58 9 1.393 587.77 448.18 416.28 402.39
25 0.904 3065.95 | 1567.00 | 1281.68 | 1165.29 25 1.261 730.93 455.66 403.27 381.89
49 0.880 4040.53 | 1741.73 | 1354.84 | 1203.67 49 1.227 905.45 483.30 412.25 384.49
81 0.856 4960.45 | 1877.30 | 1404.59 | 1225.75 81 1.194 1070.02 | 503.83 417.03 384.19
121 0.844 5900.10 | 2009.99 | 1456.79 | 1252.84 121 1.177 1240.24 | 525.86 424.27 386.82
225 0.842 7909.80 | 2287.80 | 1577.01 | 1325.28 225 1.174 1609.99 | 577.57 447.05 400.82
TU Delft SECSFVS = SECprocess *nregions]/a [i@l/i ez/i 63/i 64/i 95/i96/i 97/i eg]s 13

Presented values are obtained by scaling ply thickness to match the buckling load




Discussion and Outlook

Changing the paradigm T S




Discussion

= All values presented in this work are for demonstration purposes only

= The work presented is a preliminary study in this direction

= This study is limited to energy required for a composite component

= The energy required to manufacture the aluminium plate is lower than for either composite material

= The energy required to manufacture the composite B panel is roughly a third of that required for the composite A panel

= The results for composite B show that it should be possible to reduce the overall energy of a composite component by

means of structural optimisation

= In follow-up work a full optimisation for a number
of materials and production processes will be performed

S.T. lIUsselmuiden, M.M. Abdalla, and Z. Girdal, Optimization of
variable-stiffness panels for maximum buckling load using
lamination parameters, AIAA Journal, 48, 2010, pp. 134 — 143.
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1 - Conceptual Optimization

Optimum Stiffness
(Lamination Parameters)

Design Drivers:
Structural Requirements
(Strength. Buckling. Weight)

v

Output:
Conceptual Optimum
Design Sensitivities

2 - Fiber Angle Retrieval

______________________________

True Fibre Architecture

v

Design Drivers:
Conceptual Optimum and
Manufacturing Requirements

v

Output:
Fiber Angles and Stacking
Sequence Per Point

3 - Fiber Path Construction

______________________________

Fiber Paths

§\

_a—
—

v

Design Drivers:
Fiber Angle and Thickness
Distribution

v

Output:
Path Information for Fiber
Placement Machine




The choice of composite aircraft parts
over alumium ailrcraft parts is to be
considered carefully should the life cycle
impact of light-weighting become less
dominant in the future
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Thank you for your attention

Dr. ir. Julien van Campen
j.m.j.f.vancampen@tudelft.nl

%
TUDelft



