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Composite pressure vessels
How are they made and what defects can they have?



Effect of variability on performance
Optimised design

Filament winding of composite pressure vessels
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Fibre Spools
Winding tension control

Comb
Alignment control

Resin bath
Impregnation rate control

Nip rollers
Winding angle control

Rotating liner/ 
Mandrel

Low control of processing parameters

Microstructural variability /defects



Microstructural variabilities and defects
Which parameters are of interest and why?
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Voids

• Affect thermo-mechanical 
performance

• Act as crack initiation sites

Fibre misalignment

• Reduces tensile modulus
• Reduces load-carrying 

capacity

Fibre volume fraction variation

• Affects local and global 
strength

• Affects stress recovery 
length

Scott et al. (2014), Breite (2021), Mehdikhani et al. (2021) 
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Microstructural variabilities and defects
Which parameters are of interest and why?

Voids

• Affect thermo-mechanical 
performance

• Act as crack initiation sites

Fibre misalignment

• Reduces tensile modulus
• Reduces load-carrying 

capacity

Fibre volume fraction variation

• Affects local and global 
strength

• Affects stress recovery 
length

All variabilities/defects are affected by manufacturing parameters
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Microstructural variabilities in filament winding
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Voids Fibre misalignment Fibre volume fraction variation

Lasn et al. (2020), Scott et al. (2014), Malgioglio (2021), Cohen et al. (2001), Rafiee et al. (2018) 

* Most studies focus on hoop layers given their contribution to burst performance
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Microstructural variabilities in filament winding

Voids Fibre misalignment Fibre volume fraction variation

Lasn et al. (2020), Scott et al. (2014), Malgioglio (2021), Cohen et al. (2001), Rafiee et al. (2018) 

* Most studies focus on hoop layers given their contribution to burst performance
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Accurate and representative microstructural characterisation is vital!
Optimum characterisation strategy needs to be defined



Micro-CT for pressure vessel 
characterisation
Methodology, scan parameters and 
challenges



Micro-CT scan and preliminary observations
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Tescan UniTom HR
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Qualitative observations - 1
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Helical layer

Hoop layer

Interlayer voids

Intralayer voids Large void size range, complex shaped voids



Qualitative observations - 2
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Matrix-rich regions

High fibre volume fraction

Inter- and Intra-tow voids
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Location 2
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• What voxel sizes should be used to capture all variabilities and defects?

• What scan parameters should be used for optimising quality and time?

• Which locations and how many samples should be scanned for a representative analysis?



Representative microstructural analysis = 

Optimum scanning parameters  + Optimum segmentation strategy 
(scale vs. time)

x 

statistically representative samples
(location of sample, number of samples)
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How can we get representative microstructure?



Scan parameter optimisation



1.6 µm (With binning)

1 µm (With binning)

~3.5 hours

~1.5 hours

Voxel size(s) and scanning modes

Void and fibre visualisation

Voids (big, complex) → low 
resolution

Fibre related variabilities → high 
resolution

1.8 µm

0.5 µm 0.8 µm

1.2 µm
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1.6 µm, binning
Nanofocus

1 µm (With binning)

~3.5 hours

~1.5 hours

Voxel size(s) and scanning modes

Focus mode

For lower resolution (voids)

Scan time optimisation with
sufficient image quality

1.6 µm with binning in microfocus
mode

1.6 µm, binning
Microfocus

~ 20 minutes
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Voxel size modification based on observations

• ↑ Voxel size ➔↑ scanned volume ➔
more representative analysis

• Void size distribution for 11 pressure 
vessels
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less than 10% to overall void content
• voxel size increased to 2 or 2.5 µm with 
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Voxel size modification based on observations

• ↑ Voxel size ➔↑ scanned volume ➔
more representative analysis

• Void size distribution for 11 pressure 
vessels

• Small voids (< 10000 µm³) contribute 
less than 10% to overall void content
• voxel size increased to 2 or 2.5 µm with 

binning
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1 µm (With binning)

2/2.5 µm, binning
Microfocus

Fibre visualisation

Void visualisation



Segmentation

19Smith et al. (2020), Straumit et al. (2015), Emerson et al. (2017), Schindelin et al.(2012)

Deep-learning segmentation
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Smart selection of scan 
locations



0

0.5

1

1.5

2

2.5

3

3.5

#6 #8 #10

Void fraction, 
%

Location 1 Location 2

Representative analysis

21

Location 2

Location 1
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Circumferential position analysis

To determine number of samples to be scanned at the axial location

Method:
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Scans at 2 micron

Probability distribution 
fitting

Spatial correlation – on 
average void fraction of each 

section
Cumulative mean analysis 



Circumferential position analysis
Distribution fitting

Following fits were tested:

Normal

Lognormal

Weibull

Gamma

Generalised extreme value

Number of samples based on distributions:

Within 10% of mean - Estimated N ~ 15/16

Within 20% of mean - Estimated N ~ 8
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Circumferential position analysis
Spatial correlation

Spatial correlation computed using Contiguity matrix (weighting of neighbors) and Moran’s I (MI)

No spatial correlation found

With consideration of immediate neighbors only → weak negative correlation

With consideration of weighted contribution from all neighbors → perfect randomness

Significance of autocorrelation→ p-value not significant 
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MI  = -1 :  Perfect dispersion
(Clustering of dissimilar values)

MI  = 0:  Perfect randomness MI  = 1 :  Perfect clustering
(Clustering of similar values)



Circumferential position analysis
Cumulative mean analysis - method

Methodology:

Mean with increasing number of samples 

Observe when trend becomes stable → ideal # of samples
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N-side polygon with selected origin
up to N = 19
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Circumferential position analysis
Cumulative mean analysis - results

Analysis with each location 
as origin

N = 4+ samples, well 
distributed
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10% within mean
20% within mean
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Axial position analysis

Failure observed mostly near centre of the pressure vessel

Simulation and literature → approximate zone of failure

Further microstructure analysis for the below highlighted zone in progress
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Conclusions
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Optimised and representative microstructure analysis for composite pressure vessels

2/2.5 µm, binning
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