

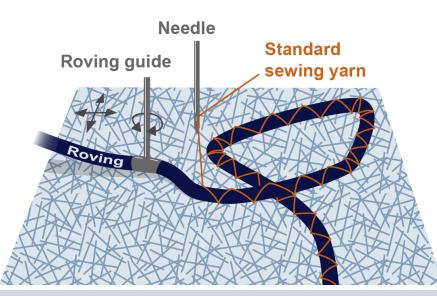
TAILORED FIBER PLACEMENT ON NONWOVENS MADE OF RECYCLED CARBON FIBERS

ICCM23 – International Conference on Composite Materials

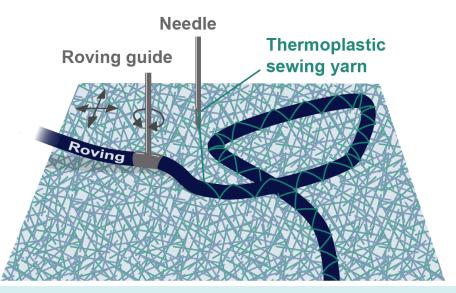
Kai Uhlig¹, L. Bittrich¹, A. Spickenheuer¹, A. Sambale¹, M. Hofmann² and M. Stommel^{1,3}

- ¹: Leibniz-Institut für Polymerforschung Dresden e.V., Germany,
- ²: Sächsisches Textilforschungsinstitut e.V., Chemnitz, Germany
- ³: Faculty of Mechanical Science and Engineering, Institute of Materials Science, TU Dresden, Germany

Outline


CoDiCoFRP - Tailored Fiber Placement (TFP) on nonwovens made of recycled carbon fibers

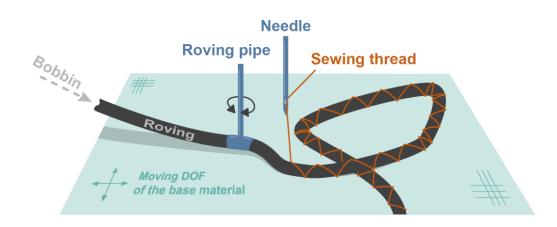
- Motivation and Approach
- Introduction Tailored Fiber Placement
- Requirements of rCF nonwovens for TFP application
- Mechanical properties of rCF/TFP pCF laminates with EP matrix
- Bolt tensile specimen sub component
- Application of the technology on a complex part
- Conclusion and Outlook


CoDiCoFRP – TFP on nonwovens made of recycled carbon fibers (rCF) Motivation

• Enable the production of competitive CoDiCoFRP parts with at least 50 % rCF content and local continuous fiber reinforcements made of primary carbon fibers (pCF) using the TFP technology

Investigated approaches

Base material: Nonwoven made of recycled carbon fibers Roving: Toho Tenax HTS 12K Matrix: Epoxy (EPR L20 & EPH 161) Sewing yarn: Polyester



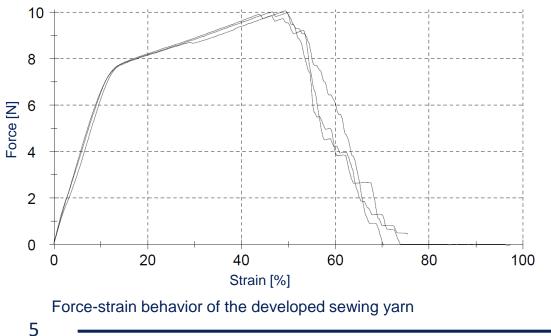
Base material: Nonwoven made of recycled carbon fibers and PA6.6 thermoplastic fibers Roving: Toho Tenax HTS 12K Matrix: PA6.6 (base material and the sewing yarn) Sewing yarn: specifically developed PA6.6

Tailored Fiber Placement (TFP)

Properties/Principle

- Development in the 1990s at IPF
- deposition speed up to 6 m/min per head
- productive textile, variable-axial and near net-shape preform technology
- arbitrary materials applicable, deposition radius $r \le 5 \text{ mm}$
- (sub-)preform limited by bordure frame dimensions $\approx 1 \text{ m}^2$, t $\leq 6 \text{ mm}$

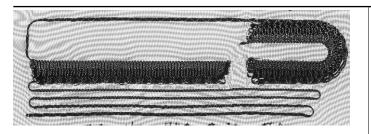
TFP-Principle

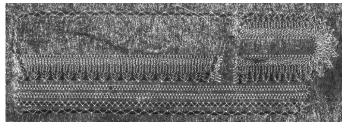

TFP-Process - Movie

Requirements of rCF nonwovens for TFP application Sewing yarn for rCF/PA6.6 laminates

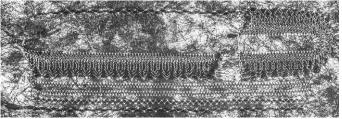
- commercially available PA6.6 sewing yarns contain silicone in the sizing
 → silicone reduces the fiber/matrix interphase strength drastically
- Development of a silicone free PA6.6 sewing yarn required
- IPF in house development, 24 tex PA6.6 sewing yarn with minimal sizing content (silicone free)

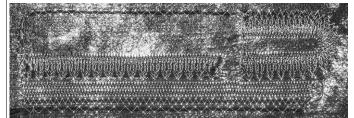
PA6.6 sewing yarn spool

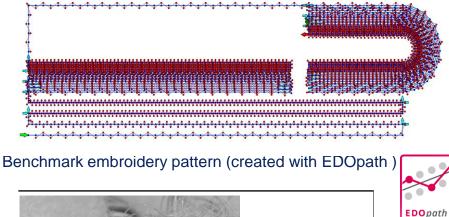

Sewing yarn production line


Requirements of rCF nonwovens for TFP application

TFP experiments


- Analysis of placement accuracy using a benchmark embroidery pattern
- At least 100 g/m² (gsm) are required for a stable TFP process when **pure rCF** is used
- Pure PA6.6 staple fiber base material no precise fiber placement possible


Reference (glas woven fabric 108 g/m²)


rCF 100 g/m², Krempel manufacturing process

rCF 50 g/m², Krempel manufacturing process

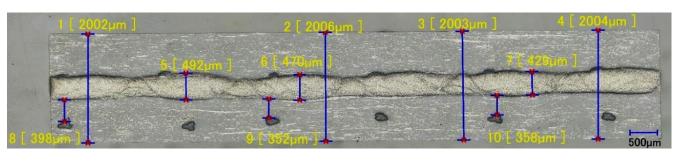
rCF 100 g/m², Airlay manufacturing process

rCF/**PA6.6** – too high vertical compressibility of the PA6.6 nonwoven fabric

rCF/PA6.6 – unsufficient placement accuracy

Manufacturing of rCF/TFP pCF laminates with EP matrix

Resin transfer molding (RTM) process


- 50/50 proportion pCF/rCF, TFP layer unidirectional, placed in the middle
- Reference laminate made of pCF NCF with quasiisotropic stacking, identical EP system and tooling
- Homogenous resin distribution due to rCF nonwoven layer, stable RTM process
- \rightarrow low fiber volume content in rCF layer

Laminate stacking TFP pCF / rCF

RTM tool II

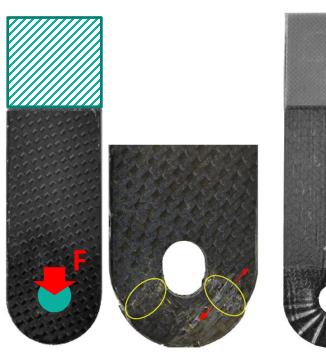
Laminate quality TFP pCF / rCF laminate

ICCM 23

Mechanical properties of rCF/TFP pCF laminates with EP matrix

Tensile test results

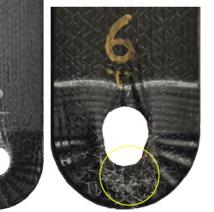
- 50/50 proportion pCF/rCF, TFP layer unidirectional
- Reference laminate made of pCF NCF with quasiisotropic stacking, identical EP system and tooling
- \rightarrow low fiber volume content in rCF layer limits the performance
- → when pCF are placed in load direction (added to the rCF nonwoven), performance increases significantly but the level of the pCF reference laminate cannot be reached


Zwick/Roell Tensile test rig with 20 kN load cell

Laminat-Configuration	Laminate thickness	$ar{arphi}^{ extsf{l})}$	$arphi$ rCF $^{1)}$	arphiTFP , $arphi$ NCF	E (E_{\parallel} , E_{\perp})²)	R ($R_{\parallel}^{(+)}$, $R_{\perp}^{(+)}$)²)
	[mm]		%	%	[N/mm²]	[N/mm²]
rCF – TFP pCF 50/50 ∥	2.22 ± 0.18	35,0	12.4 ± 0.3	57.6 ± 4.4	33526 ± 2322	392.0 ± 31.5
rCF – TFP pCF 50/50 \perp	2.31 ± 0.18	33,25	11.8 ± 0.1	54.7 ± 2.1	18235 ± 1584	172.3 ± 24.6
pure rCF laminate	2.24 ± 0.01	15,0	15.0 ± 0.1	-	21385 ± 1447	250.4 ± 34.0
NCF QI laminate	1.04 ± 0.01	42,6	-	42.6	38760 ± 1245	592.0 ± 56.4

Bolt tensile specimen – sub component Tensile test results

- 50/50 proportion pCF/rCF, TFP layer fiber layout according principal stress direction
- Reference laminate made of pCF woven fabric with quasi-isotropic stacking, identical EP system and tooling
- → low fiber volume content in rCF layer and lower fiber content in general limits the failure load
- → pCF/rCF TFP shows significantly increased displacement and provide a higher energy absorption capacity up to total failure
- → when normalized to the fiber volume content failure load is comparable to the pCF only reference laminate



pCF woven fabric bolt tensile specimen including failure image

rCF – pCF TFP 50/50 bolt tensile specimen including failure image

Bolt tensile specimen – sub component configuration	$ar{arphi}$	arphirCF	arphiTFP or $arphi$ NCF	Max load F_{max}	Displacement till ultimate failure s [mm]
		%	%	[N]	
CF - pCF TFP 50/50 - TFP fiber layout according to principal stress direction	33.0	ca. 12.5	ca. 55.0	31652 ± 1778	4.3
Woven fabric pCF – quasiisotropic stacking	52.0	-	52.0	50224 ± 2752	2.0

Application of the technology on a complex part – bike saddle

Results

- Excellent drapeability even on double curved surfaces
- Excellent wetting properties, stable resin infusion process
- competitive weight of the saddle shell (approximately 90 grams) due to optimized TFP pCF layout while still containing 50 % rCF

Demonstration part "bike saddle": TFP-CF on rCF nonwoven preform (top) and consolidated part (bottom), rCF content > 50 %, Embroidery pattern created with EDOpath

Summary

- The developed pure rCF nonwovens allow a reliable processing in the TFP process
- Due to the vertical compactibility of staple fiber based PA6.6 nonwovens no precise fiber placement is possible
- TFP preforms on rCF nonwovens exhibit a very good drapeability and a excellent wetting behavior
- The resulting material properties of the TFP based CoDiCoFRP are slightly limited by the low fiber volume content in the rCF nonwoven layer
- Due to the high degrees of freedom regarding the fiber orientation, competitive parts can be produced when the load case is known and the fiber layout is adapted accordingly

Outlook

 Combination of pCF TFP on PA6.6 foil and PA6.6 staple fibers with included rCF to enable the production of TFP based CoDiCoFRP with thermoplastic matrix materials and a substantial rCF content

Acknowledgement

Europäische Union

Diese Maßnahme wird mitfinanziert durch Steuermittel auf Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

for funding this work

Thank you!

Kai Uhlig, <u>uhlig@ipfdd.de</u> www.ipfdd.de/tfp-technology