

Synchronal Toughening and in situ Self-healing of Laminated Fiber-reinforced Composites via Copolymer Interlayers

Jack Turicek¹, A. Snyder¹, Prof. Patrick^{1,2}

¹ Department of Mechanical and Aerospace Engineering

² Department of Civil, Construction, and Environmental Engineering North Carolina State University (NCSU)

NC STATE UNIVERSITY

Civil, Construction, & Environmental ENGINEERING Mechanical & Aerospace **ENGINEERING**

- Motivation / Background
- 3D-printing and Composite Fabrication
- Investigation of Toughened / Self-healing Composites
 - In-plane Tensile Comparison
 - Thermo-mechanical Property Evaluation
 - Interlaminar Fracture Toughening
 - In Situ Self-healing via Thermal Remending
- Summary / Conclusions

Motivation

Aerospace

Automotive

Naval

Civil

Energy

Motivation/Background

Composite architecture

Compos. Struct. 79 (2007)

Difficult to inspect/repair

www.dsto.defence.gov.au

Fracture damage

ASM International (2010) Polymer 53 (2012)

Catastrophic failure

USAF Hilltop Times

Proactive Toughening to Prevent Delamination

Polym. Chem. 4 (2013)

Reactive Self-healing to Address Delamination

Soft Materials

Agnew. Chem. 51 (2012)

Interfacial contact enables room-temperature repair

Intrinsic

Annu. Rev. Mater. Res. 40 (2010)

Structural Materials

Science 295 (2002)

Requires external energy for repair (e.g., elevated temperature) ₄

Thermal Remending

- Thermal remending is a hybrid (extrinsic-intrinsic) technique with thermoplastic inclusions embedded in structural material
- After damage, application of heat enables the bond reformation of thermoplastic to provide healing of the larger structural host
- Poly(ethylene-co-methacrylic acid) EMAA is a commodity polymer with proven thermal remending ability

100 µm

Modified Matrices

Polymer 92 (2016)

ACS Appl. Mater. Inter. 1 (2009)

Particles and Woven Fibers

EMAA

Compos. Part A 43 (2012)

Macromol. Mater. Eng. 295 (2010)

Important Notes

- 1. Healing achieved **ex situ** (in an oven)
- 2. Healing requires heating above the glasstransition temperature (T_g) - (softening)
 - Toughening + Self-healing

Compos. Part A 43 (2012)

State-of-the-Art Thermal Remending Technique

• Recently our lab has developed a thermal remending platform for *in situ* self-healing below the glass-transition temperature (T_g)

3D-printing onto preform substrate

Internal delamination damage

Pristine multifunctional composite laminate

Self-healing via in situ thermal remending

- Investigate effect of EMAA pattern thickness, areal coverage, and orientation on toughening and healing performance
- Fused deposition modeling (FDM) to precisely print EMAA patterns directly onto woven substrate

EMAA Toughened GFRP layup [90/0]₄/EMAA/[90/0]₄

Self-healing GFRP layup

[0/90]₂/H/0/90/0/EMAA/90/0/90/H/[0/90]₂

GFRP – Glass Fiber Reinforced Polymer

Printing directly on woven fabric

Completed prints with high precision

VARTM Process and Composite Fabrication

Curing conditions: 24h @ RT + 2h @ 121°C + 2h @ 150°C

7

• EMAA inclusions have minimal impact on in-plane tensile performance

- Bilinear stress vs. strain response is nearly indistinguishable between EMAA toughened and plain composites
 - Initial modulus, final modulus, and ultimate tensile strength exhibit <5% difference

• EMAA inclusions have **minimal impact** on **thermomechanical performance**

$$E^* = E' + iE'' \quad \tan(\delta) = \frac{E}{E'}$$

- Evolution of E', E", and $tan(\delta)$ are nearly **indistinguishable** between EMAA toughened and plain composites
- Elastic storage modulus exhibit <5% difference at room temperature and the glass transition temperature

ASTM D-7028, E-1640

Because thermal remending (130°C) occurs below the T_g of the composite matrix:

- Maintain structural integrity during healing
- EMAA inclusions do not meaningfully affect thermomechanical performance within operating temperature range

600

500

200

100

0

0

Mode-I fracture testing is used to characterize **toughening** and **self-healing** performance ٠

Fracture Testing to Evaluate Interlaminar Toughness

Healing Cycle: (heat) 15 min. @ 130°C (cool) 30 min. until RT

*Journal of Materials Science Letters 8 (1989).

 $G_{\rm IC}$ calculated with area method

Healing Efficiency** (Eq. 3)

Ghealed

 $\frac{1}{G_{\rm IC}^{\rm virgin}} \times 100\%$

• Areal coverage and thickness dominates global toughening while orientation controls local crack propagation behavior

• Up to 450% increase in interlaminar fracture resistance!

L vs. T less pronounced at higher areal coverages

• Up to 100% healing efficiency is achieved for 10 heal cycles where EMAA pattern areal coverage dominates healing response

Healing Cycle: (heat) 15 min. @ 130°C (cool) 30 min. until RT

Scanning Electron Microscope Images

main scale = 25μ m, inset scale = 10μ m

- Cohesive fracture shows signs of ductile tearing
- Micro-porous networks form after Heal 1
- Micro-porous networks are fully developed by Heal 10

- Designed a proactive **toughening** and reactive **healing** strategy to mitigate **delamination**.
- Achieved up to a 450% increase in mode-I fracture resistance via incorporation of 3D-printed EMAA interlayers.
- Minimal (< 5%) effect of interlayer modifications on in-plane tensile and thermomechanical performance compared to plain composite laminates.
- Demonstrated repeated complete (100%) restoration of fracture resistance for 10 consecutive heal cycles without degradation in healing performance.
- Discovered EMAA areal coverage and thickness dominates the global fracture and self-repair response while interlayer pattern orientation controls local crack propagation behavior.

Turicek et al. Composites Science and Technology (2023) https://doi.org/10.1016/j.compscitech.2023.110073

Acknowledgements

Funding Source: U.S. Army Corps of Engineers - Strategic Environmental Research and Defense Program (SERDP)

US Army Corps of Engineers.

Multifunctional Composites Group

Academic Collaborators:

Innovating Materials & Structures

Prof. Nakshatrala

Prof. Patrick

Alex