TWENTY-THIRD International Conference on composite materials (ICCM23)

The Influence of Tape Geometry on the Mechanical Performance of Bolted CFRTP-SMC Joints

No. 1246

(Composites Behaviour & Life Cycle Performance - Mechanics of composites)

X. Tong, L. Meng , Y. Wan and J. Takahashi

Department of Systems Innovation The University of Tokyo, Japan

1

Content

Introduction

Research content and experiments

Results and analysis

Conclusions

Virtual climate summit 2021

Mid to long-term targets for emission reduction

	2030 target	Time point for achieving carbon neutrality
U.S.A	50%-52% cut from 2005 level	2050
Japan	46% cut from 2013 level	2050
EU	55% cut from 1990 level	2050
U.K.	78% cut from 1990 level	2050

[1] https://www.voanews.com/science-health/biden-urges-world-leaders-keep-promises-climate-following-summit

[2] NOAA National Centers for Environmental information, Climate at a Glance: Global Time Series, published June 2021, retrieved on June 28, 2021 from https://www.ncdc.noaa.gov/cag/

[3] Our World in Data based on Friedlingstein, etc.: Global Carbon Budget 2022, Earth Syst. Sci. Data, 14, 4811-4900, https://doi.org/10.5194/essd-14-4811-2022, 2022.

[4] https://asia.nikkei.com/Spotlight/Environment/Climate-Change/Japan-and-US-pledge-sharper-cuts-by-2030-at-Biden-climate-summit

The role CFRP material will play in emission reduction

[1] Bright, Mennet, and Hakan Aphan. Global growth in onshore wind turbine technology. Clean Technologies and Environmental Foncy 24.7 (2022). 2215 [2] Steigmann, Rozina, et al. "Wind turbine blade composites assessment using non-contact ultrasound method." J. Clean Energy Technol 4 (2016): 440-443.

[3] Bachmann, Jens & Hidalgo, Carme & Bricout, Stéphanie. (2017). Environmental analysis of innovative sustainable composites with potential use in aviation sector—A life cycle assessment review. Science China Technological Sciences. 60. 10.1007/s11431-016-9094-y.

[4] https://www.compositesworld.com/articles/the-making-of-the-bmw-i3

The new requirements for CFRP

- From high-tech industry to civil industry
- ➢ From performance-oriented to cost-oriented
- From focusing on quality to focusing on production efficiency

Developing materials with lower cost & Finding more effective assembly method

- [1] https://www.jaxa.jp/projects/sat/qzss/topics_j.html
- [2] http://www.acv.co.jp/02_racing/active_handle_race.html
- [3] https://tri-austin.com/portfolio-item/resins-for-missile-casing-projects/
- [4] https://www.compositesworld.com/articles/safe-cycling-keys-to-composite-bike-design-integrity
- [5] https://tri-austin.com/portfolio-item/efficient-on-aircraft-composite-repair/
- $[6] \ https://www.m-chemical.co.jp/news/2017/_icsFiles/afieldfile/2017/05/18/20170518.pdf$

- More expensive resins
- Better processability
- Good temperature resistance
- Difficult to recycle and reprocess

- Lower cost resins (PA,PP)
- Good impact resistance
- High process cycle efficiency
- Able for secondary • treatment and recycling

Promising material for mass production

[1] Nakashima Y. Relationship between internal geometry changes during compression molding and mechanical behavior of chopped carbon fibre tape reinforced thermoplastics. The University of Tokyo, 2018.

- Randomly oriented strands material \geq
- Chopped tapes of carbon fiber and PA6 prepreg

Good mechanical properties and affordable price

Assembly method

[1] https://www.autoweek.com/news/a1868071/carbon-core-2016-bmw-7-series-gets-carbon-fiber-implants/

[2] Banea, Mariana D., and Lucas FM da Silva. "Adhesively bonded joints in composite materials: an overview." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 223.1 (2009): 1-18.

[3] Meer, Thomas, and Matthias Geistbeck. "Automated welding of thermoplastic joining element on CFRP." Lightweight Design worldwide 10.4 (2017): 34-39.

The prospect of mechanical connection

[1] https://carbonsteed.com.au/carbon-repairs-automotive/

[2] Scarf sanding technology for carbon fiber reinforced plastics (CFRP) airframe https://www.aero.jaxa.jp/eng/research/basic/structure-composite/scarfsanding

From the perspective of SMC material

Tape Geometry has a significant influence on the mechanical property of SMC material

From the perspective of bolted connection

- Viscoelastic relaxation behaviour of composite material will cause a relaxation process of initial tightening preload
- Changes in the initial preload will influence the failure mode and mechanical performance of the structure

[1] Yamashita S, Hashimoto K, Suganuma H, Takahashi J. Experimental characterization of the tensile failure mode of ultra thin chopped carbon fiber tape reinforced thermoplastics. J Reinf Plast Compos 2016;35:1342 52. https://doi.org/10.1177/0731684416651134.

- ➢ How does tape geometry affect the static bearing failure of bolted CFRTP-SMC joints?
- ➢ How does tape geometry influence the sensitivity of the material to different preload levels?
- > What is the failure mode of SMC material under bearing loading?
- ➢ How will tape geometry influence the fatigue resistance of bolted structures?

Improve performance and durability of bolted CFRTP-SMC structures

Manufacturing process of CFRTP-SMC specimen

Tape geometry of samples

Tape width=5mm	Tape length		
Tape thickness	8mm	16.5mm	26.5mm
44µm	Material a	Material b	Material c
88µm	Material A	Material B	Material C

Volume fraction of carbon fiber, resin and voids for the samples

Material	Vf	Vr	Vv
а	49.80%	49.17%	1.03%
Α	49.83%	49.16%	1.01%
b	50.65%	48.73%	0.61%
В	50.14%	48.98%	0.88%
c	50.00%	48.88%	1.12%
С	50.90%	48.71%	0.39%

11

Static bearing test

			^
Reference standard	ASTM 5961		w
Testing machine	UTOGRAPH AG-Xplus 100 kN (Shimadzu universal testing machine)		→
Loading speed	1mm/min		
Material	CFRTP-SMC(PA6)		
	H: 15mm	Specimen configurati	ons
	L1: 30mm		
Spacimon dimonsions	L2: 85mm	Upper Grip F	$F^{bru} = P^{max} / (k \cdot D \cdot t)$
specifien dimensions	W: 30mm		
	D: 4mm	AE sensor Specimen	Ebru. bearing strength
	Ф: 6mm	Bolt or Pin	D^{max} , static bearing load
Initial preload (Provided by a torque wrench)	Pin loaded		P^{trade} : static bearing load $k-1$ (single fastener)
	0Nm	Loading Fixture	D= hole diameter.
	7Nm	Spacer	t= specimen thickness
	10Nm	Lower Grip	
		Test setup	

- \checkmark The load displacement curves can be divided into three stages
- \checkmark The increase of AE (acoustic emission) counts indicate that the damage will expand after entering stage II
- ✓ Due to the characteristics of CFRTP-SMC, after reaching static bearing strength the material still maintains a certain strength

➤ Tape thickness= 44µm

- There is a positive relationship between tape length and static bearing strength
- ✓ By increasing tape length from 8mm to 26.5mm static bearing strength increased by 6.74%, 5.73%, 1.71% and 4.24% under different preload levels
- ✓ For the bolted samples, variance of static bearing strength is larger when the tape is longer

➤ Tape thickness= 88µm

- ✓ By increasing tape length from 8mm to
 26.5mm static bearing strength increased by
 9.21%, 10.51%, 14.24% and 5.14% under
 different preload levels
- $\checkmark\,$ The positive relationship remains the same

- ✓ A negative relationship between tape thickness and static bearing strength was observed
- ✓ By increasing tape thickness from 44µm to 88µm, the reduce of static bearing strength will be at most 13.79% considering different tape length and initial preload conditions

Relative static bearing strength loss caused by initial preload decrease

	Tape thickness 44µm			Tape thickness 88µm		88µm
Tape length	10Nm	7Nm 0Nm		10Nm	7Nm	0Nm
8mm	100%	-4.58%	-15.41%	100%	-2.15%	-13.39%
16.5mm	100%	-3.37%	-16.73%	100%	-2.08%	-9.15%
26.5mm	100%	-5.48% <mark>-19.39%</mark>		100%	-1.03%	-9.40%

- \checkmark For each material, the bearing strength when the initial preload=10Nm is defined as a standard reference
- ✓ Same level of preload loss will result in **less relative decrease** in static bearing stress when the tape is **thicker**

CFRTP-SMC with thicker tapes will have stronger resistance to preload relaxation

Metallographic sample

Samples before test

	CTT with thicker tapes	CTT with thinner tapes	
Resin-rich areas at tape ends	Large	Small	I
In-plane fiber waviness	Winding	Keep its original shape	
Out-of-plane orientation	Large angle	Small angle	

Comparison for thicker & thinner tape material [1]

✓ More resin-rich areas and winding in-plane fiber of SMC made of thicker tapes may contribute to a lower bearing strength

[1] Yamashita S. Effect of thin-ply on the material properties of chopped carbon fiber tape reinforced thermoplastics (CTT). The University of Tokyo, 2016.

- Bearing failure is a combination of several types of damages
- Material around assembly hole is protected by the initial preload
- Buckling and delamination happened far away from actual loading area

Fracture morphology of material with different tape geometry when the initial preload=10Nm

- Material with different tape
 geometry has similar
 failure mode
- Laminate bending is more sever when the tape of material is thicker

Fatigue test

Reference standard	ASTM D 6873	
Testing machine	Servopulser EHF-UB5-20L 50 kN (Shimadzu hydraulic servo dynamic testing machine)	Load
Frequency	10Hz	
Stress ratio	R=0.1	
Loading factor (f)	0.66	
	H: 15mm	Fat
	L1: 30mm	
Spacimon dimonsions	L2: 85mm	Upper Gri
specifien unitensions	W: 30mm	
	D: 4mm	
	Ф: 6mm	
Initial preload	10Nm	Bolt or P
H → ←	W	Loading Fixto
	Specimen configurations	S
		Lower Grip

 $R = \frac{F_{min}}{F_{max}}$

 P_{max} : Static bearing load

Test setup

Influence of tape geometry on the fatigue resistance

Permanent hole elongation

The influence of tape thickness

 \geq

- The unrecoverable displacement when the specimen doesn't sustain any cyclic load
- Samples will experience repaid fatigue failure progress after reaching critical hole elongation

Tape geometry	Permanent hole elongation after 1 million cycles		
5*8mm*44µm (material a)	2.65%	1.00	
5*8mm*88µm (material A)	2.50%	0.94	
5*16.5mm*44µm (material b)	3.66%	1.38	
5*16.5mm*88µm (material B)	2.52%	0.95	
5*26.5mm*44µm (material c)	Failed		
5*16.5mm*88µm (material C)	2.58%	0.97	

✓ SMC with shorter and thicker tapes has stronger resistance to fatigue loading

✓ Thicker tape will reduce the influence of tape length on fatigue resistance of material

The static bearing process of SMC material can be divided into three stages, AE analysis indicates that the unrecoverable damage starts after stage II.

- > Tape length has a positive effect on static bearing strength, while tape thickness has a negative effect
- ➢ Increasing tape thickness will increase the resistance to preload relaxation
- Initial preload can provide a shielding effect for bearing failure, and materials with different tape geometry have similar failure mode.
- Shorter and thicker tapes will contribute to more robust resistance to fatigue loading

TWENTY-THIRD International Conference on composite materials (ICCM23)

Thank you for your kind attention

Presentations from Takahashi-Wan lab

Name	Date	Venue	Room	Title
Zhiyu WANG	Mon	Process modelling - S1	Studio	A state-based peridynamic model for progressive damage analysis of CFRTP-SMC base
Peng XUE	Mon	Structural analysis and optimization - S2	3B	Optimization of floating vertical axis wind turbine structures using recycled carbon fiber reinforced thermoplastic
Xiaohang TONG	Tue	Mechanics of composites - S2	3A	The influence of tape geometry on the mechanical performance of bolted CFRTP-SMC joints
Zihao ZHAO	Tue	Liquid composites moulding - S2	2A	Simulation of fiber orientation during compression molding process of CFRTP-SMC
Ruochen XU	Wed	Multiscale modelling - S5	Studio	Morphology analysis and shape optimal of CFRTP-SMC based on Monte-Carlo simulation
Qian GAO	Wed	Recycling and sustainability - S3	1B	Prediction of strength and its variation of carbon fiber mat reinforced thermoplastics using Monte-Carlo method
Weizhao HUANG	Thu	Structural health monitoring - S1	Arc	Inversing spatial modulus distribution of cfrtp by a vibrational method and its hydrothermal aging application