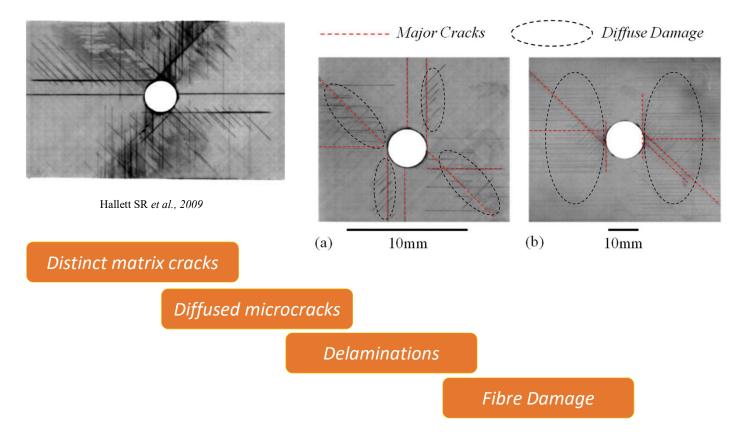

Adaptive Multi-Fidelity & Multi-Scale Modelling of Damage in Composites

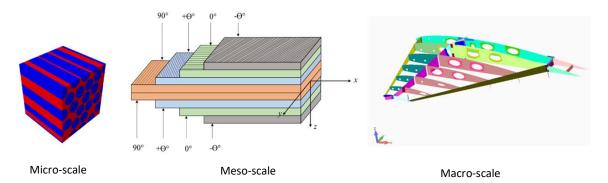
V.B.C. Tan – colleague L.H. Poh - colleague Karthikayen Raju – Postdoc K.H. Leong – PhD student K.M. Yeoh – PhD student

Past Students/Postdocs: Zhi Jie – Tongji University Boyang Chen – TU Delft Lu Xin – Tokyo University



Outline

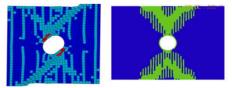
Introduction	 Hi-Fidelity Modeling of Progressive Damage in Composites Smeared Crack Models (SCM) Discrete Crack Models (DCM) Separable Cohesive Elements (SCE) 	
Numerical Models	 Adaptive Discrete-Smeared Crack Model (A-DiSC) Adaptive Multi-Fidelity Model Multiscale Modeling with Direct FE² 	
Applications	 Open-hole Tension Static Indentation Low-Velocity Impact and Compression After Impact 	
Outlook & Conclusion	Some thoughts for future research	


Discrete and Diffused Cracks Co-Exist in Composites

*Hallett SR, Green BG, Jiang WG, Wisnom MR. An experimental and numerical investigation into the damage mechanisms in notched composites. *Composites Part A: Applied Science and Manufacturing*. 2009;40(5):613-24.

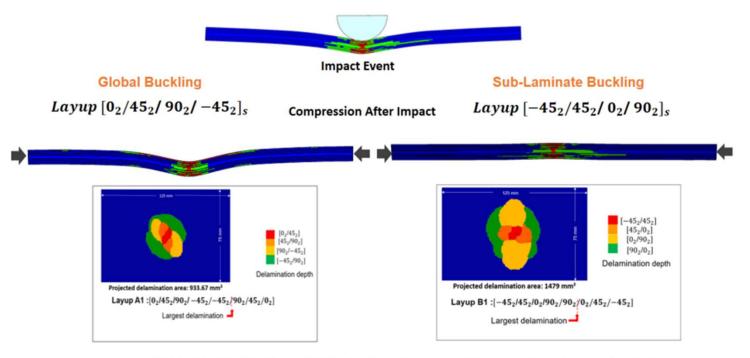
Modeling Challenges

Interlaminar damage: Cohesive elements


Intralaminar damage: Cracks → Smeared or Discrete

Discrete Crack Methods (DCM)

- X-FEM
- Phantom Node Method (PNM)
- Augmented FEM (AFEM)
- Floating Note Method (FNM)


Smeared Crack Method (SCM)

Damage is smeared out over the element - degradation of the stiffness

Example of a Smeared Crack + Cohesive Delamination Model Barely-Visible Impact Damage (BVID) and Compression After Impact (CAI)

- Abir M.R., Tay T.E., Ridha M., Lee H.P., "On the relationship between failure mechanism and compression after impact (CAI) strength in composites", *Composite Structures*, (2017), vol 182, p242-250.
- Abir M.R., Tay T.E., Ridha M., Lee H.P., "Modelling damage growth in composites subjected to impact and compression after impact", Composite Structures, (2017), vol 168, p13-25.

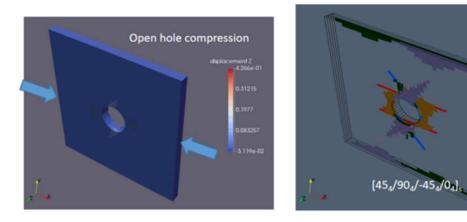
Discrete Crack Model

Example: The Floating Node Method (FNM) and Separable Cohesive Elements (SCE)

Discrete Crack Model

Applied to OHT and unnotched laminates

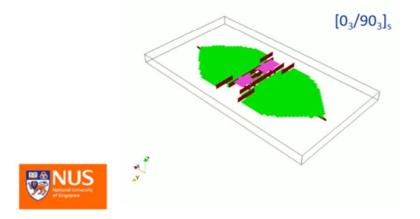
Boyang Chen – TU Delft


Unnotched laminate $[45_4/90_4/-45_4/0_4]_s$ Holed laminate $[45_4/90_4/-45_4/0_4]_s$ Fibre failure Z. 900 Split 90/-45 45/90-45/0 Matrix cracks Delamination $63.5 \mathrm{~mm}$ $120 \mathrm{~mm}$ 15.875 mm 32 mm '**↔**' 3.175 mm 41

• Chen B.Y., Tay T.E., Pinho S.T., Tan V.B.C., "Modelling the tensile failure of composites with the floating node method", *Computer Methods in Applied Mechanics and Engineering*, (2016), vol 308, p414-442.

Discrete Crack Model

Applied to OHC with geometrical non-linearity



Jie Zhi – Postdoc

 Zhi J., Tay T.E., "Interrogating failure mechanisms of notched composites through a discrete crack modeling approach", *Composites Science & Technology*, (2020), vol 196, 108203.

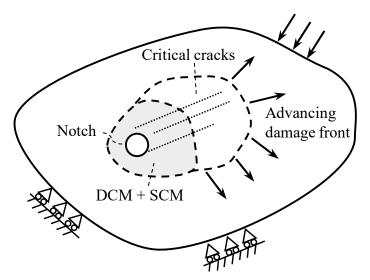
Discrete Crack Model

Applied to low velocity impact of composites

 Zhi J., Chen B.Y., Tay T.E., "Geometrically nonlinear analysis of matrix cracking and delamination in composites with floating node method", *Computational Mechanics*, (2019), vol 63, no 2, p201-217.

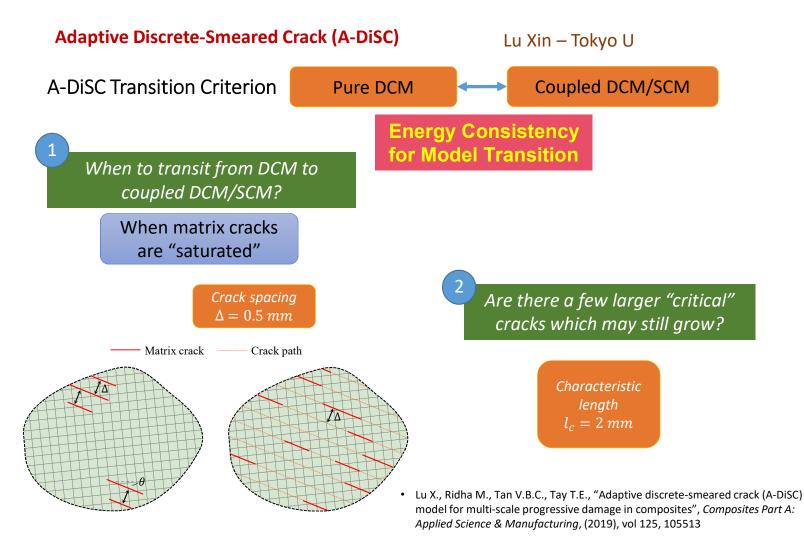
Adaptive Discrete-Smeared Crack (A-DiSC)

Discrete Crack Model (DCM):

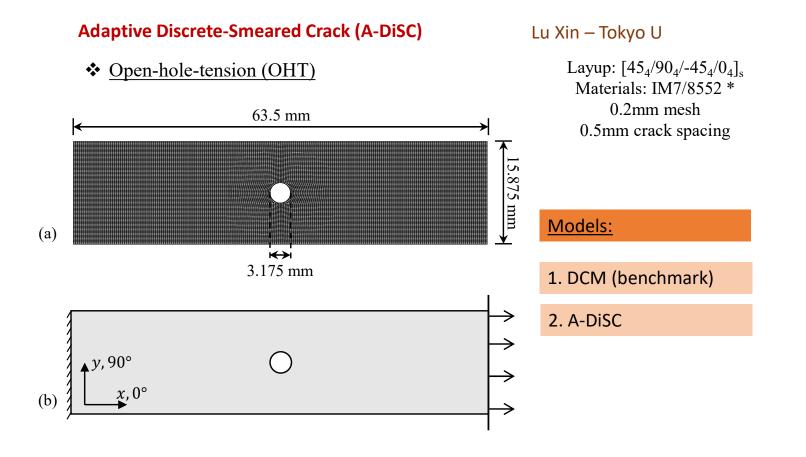

- Closer fidelity to physics of fracture.
- Computationally intense.
- Not practical for larger structures.

Smeared Crack Model (SCM):

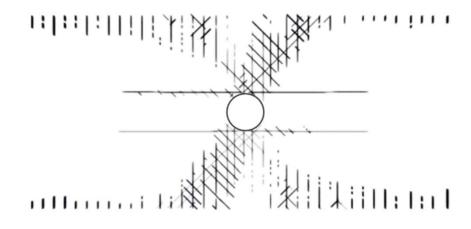
- Efficient representation of numerous micro-cracks.
- May have convergence and distortion issues
- Generally unable to model interaction with delamination accurately.

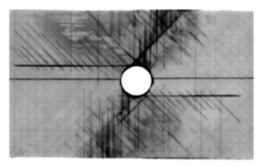

A-DiSC / Coupled Model:

- Fidelity to physics of fracture where and when needed, i.e. at active damage fronts.
- Possibly less computationally intense for larger structures.

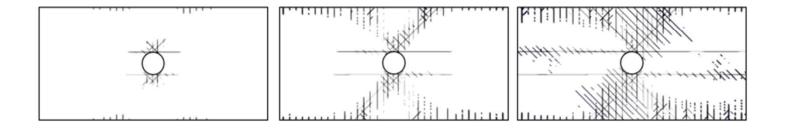


 Lu X., Ridha M., Tan V.B.C., Tay T.E., "Adaptive discrete-smeared crack (A-DiSC) model for multi-scale progressive damage in composites", *Composites Part A: Applied Science & Manufacturing*, (2019), vol 125, 105513

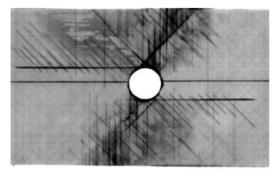


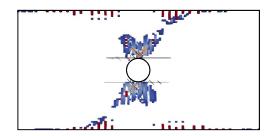


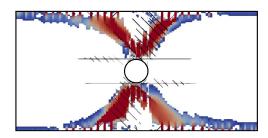
*B.G. Green, M.R. Wisnom, S.R. Hallett, An experimental investigation into the tensile strength scaling of notched composites, *Compos. Part A Appl. Sci. Manuf.*, 38 (2007) 867-878.



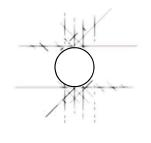
✤ <u>Pure Discrete Crack Model</u>

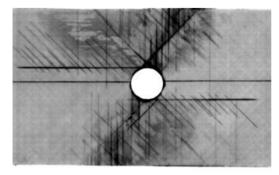

S.R. Hallett et al., 2009

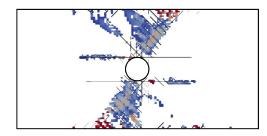


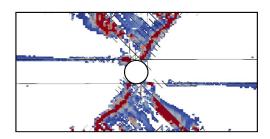

✤ Adaptive Discrete-Smeared Crack Model

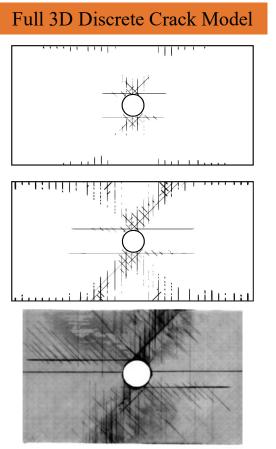
S.R. Hallett et al., 2009

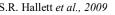


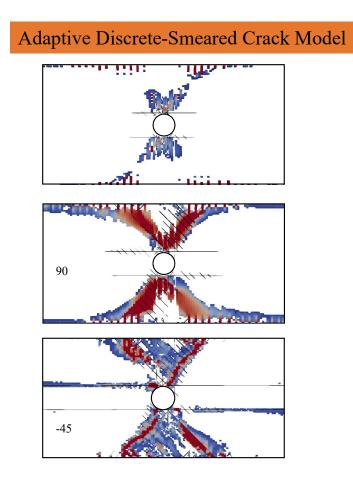



✤ Adaptive Discrete-Smeared Crack Model

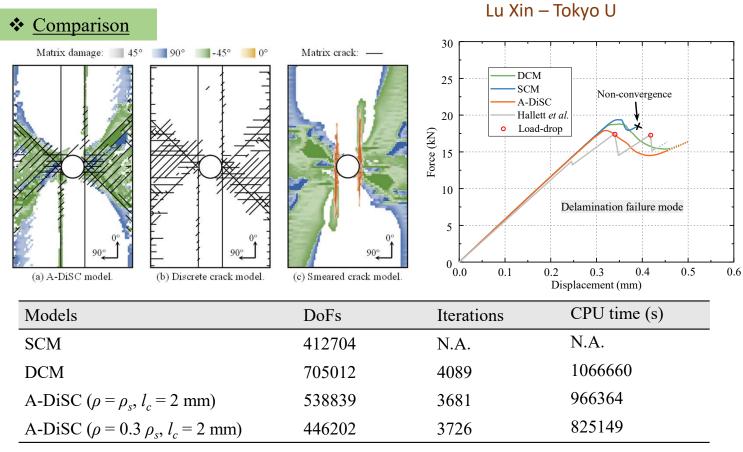

-45° ply (internal)


S.R. Hallett et al., 2009





* Comparison



S.R. Hallett et al., 2009

 ρ_s : saturated matrix crack density Up

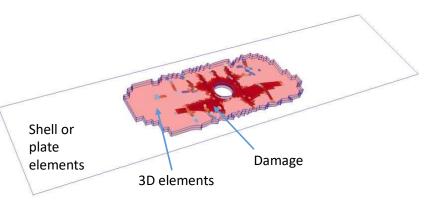
Up to 36.7% saving

Up to 22.6% saving

- NUS National University of Singapore
- Lu X., Ridha M., Tan V.B.C., Tay T.E., "Adaptive discrete-smeared crack (A-DiSC) model for multi-scale progressive damage in composites", *Composites Part A: Applied Science & Manufacturing*, (2019), vol 125, 105513

Adaptive Multi-Fidelity (AMF) Model

Discrete Crack Model (DCM):


- Closer fidelity to physics of fracture.
- Computationally intense.
- Not practical for larger structures.

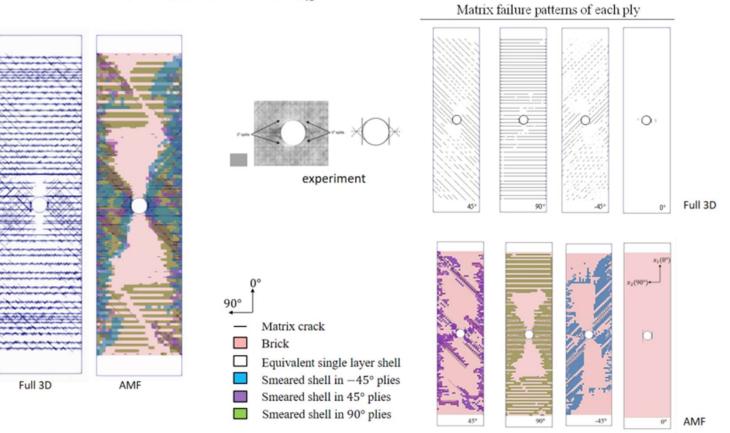
Smeared Crack Model (SCM):

- Efficient representation of numerous micro-cracks.
- May have convergence and distortion issues
- Generally unable to model interaction with delamination accurately.

A-DiSC / Coupled Model:

- Fidelity to physics of fracture where and when needed, i.e. at active damage fronts.
- Possibly less computationally intense for larger structures.

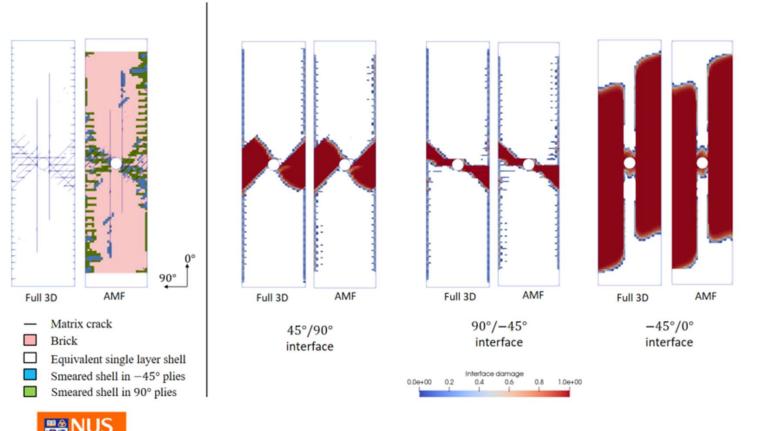
Adaptive Multi-Fidelity (AMF) Model:


- Fidelity to physics of fracture where and when needed, i.e. at active damage fronts.
- Shell \rightarrow 3D \rightarrow Shell elements adaptivity
- Less computationally intense for larger structures.

Leong K.H., Zhi J., Lee H.P., Tan V.B.C., Tay T.E., "Adaptive multi-fidelity (AMF) modelling of progressive damage in notched composite laminates", Composites Part A: Applied Science & Manufacturing, https://doi.org/10.1016/j.compositesa.2021.106790 (2022), vol 154, 106790.

Adaptive Multi-Fidelity (AMF) Model Open hole tension (OHT) [45/90/-45/0]_{4s}

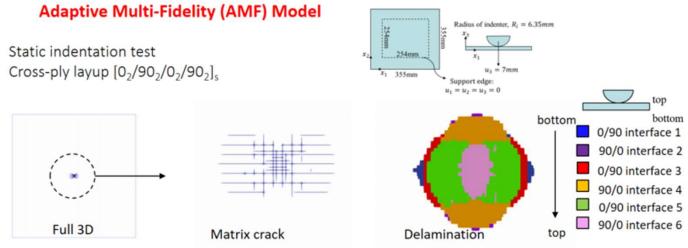
K.H. Leong – PhD student

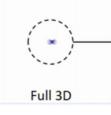


Leong K.H., Zhi J., Lee H.P., Tan V.B.C., Tay T.E., "Adaptive multi-fidelity (AMF) modelling of progressive damage in notched composite laminates", Composites Part A: Applied Science & Manufacturing, (2022), vol 154, 106790.

Adaptive Multi-Fidelity (AMF) Model

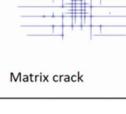
Open hole tension (OHT) Layup $[45_4/90_4/-45_4/0_4]_s$




Adaptive Multi-Fidelity (AMF) Model

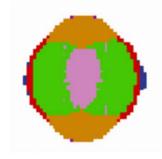
Computational time 8 CPUs (Xeon(R) CPU E5-2697 @ 2.30GHz)

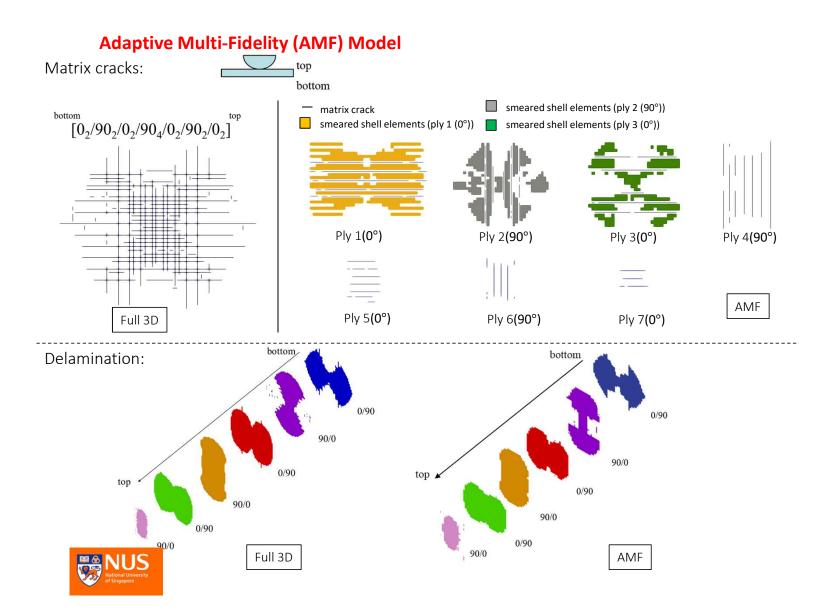
0]		
Total CPU time (hours)	10.5	8.7	-17.1%
Wallclock time (hours)	11.6	9.6	-16.5%
]		
Total CPU time (hours)	330.8	245.5	-25.7%
Wallclock time (hours)	333.5	252.7	-23.2%



AMF

ESL shell elements


brick elements



matrix crack

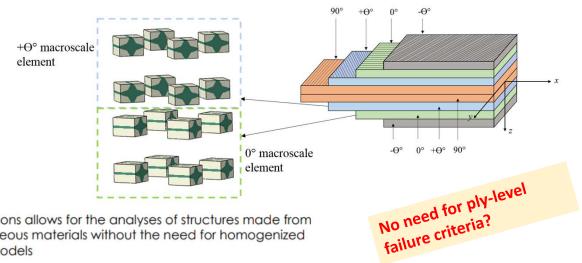
smeared shell elements (ply 1 (0°))

smeared shell elements (ply 2 (90°)) smeared shell elements (ply 3 (0°))

Adaptive Multi-Fidelity (AMF) Model

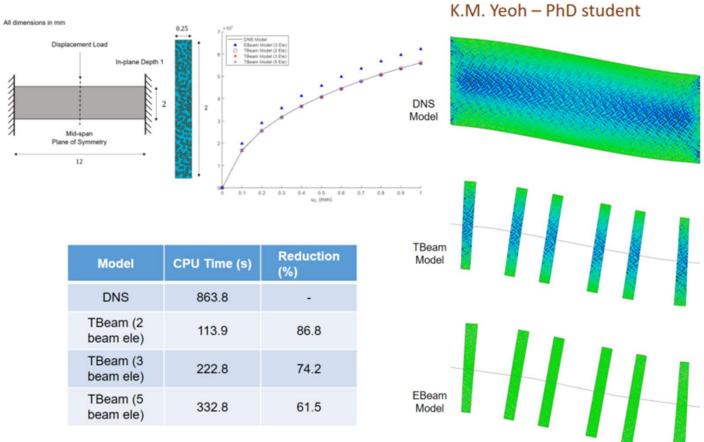
Computational time -8 CPUs (Xeon(R) CPU E5-2697 @ 2.30GHz)

Static ir			
	Full 3D	AMF	
Total CPU time (hours)	71.6	30.5	-57.4%
Wallclock time (hours)	73.3	33.1	-54.7%

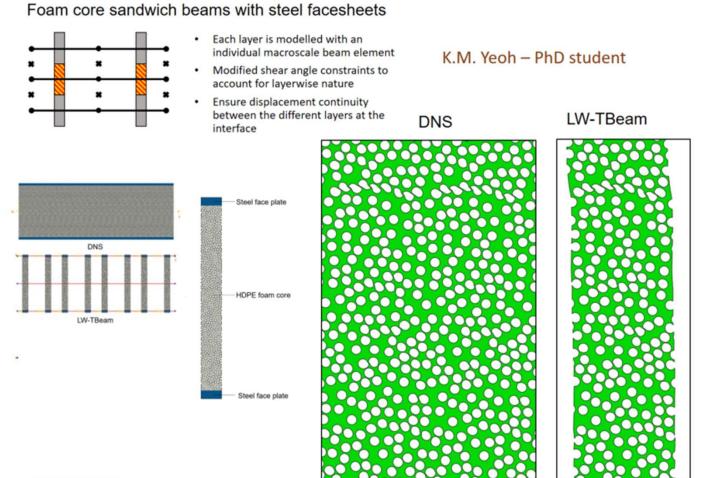


Related Publications (partial list)

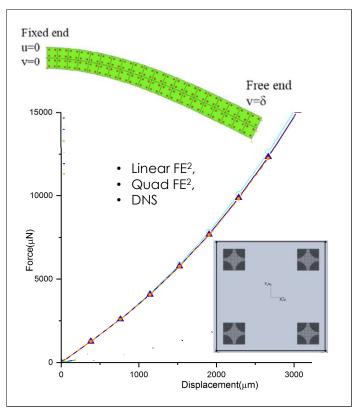
- Abir M.R., Tay T.E., Ridha M., Lee H.P., "On the relationship between failure mechanism and compression after impact (CAI) strength in composites", Composite Structures, (2017), vol 182, p242-250.
- Abir M.R., Tay T.E., Ridha M., Lee H.P., "Modelling damage growth in composites subjected to impact and compression after impact", *Composite Structures*, (2017), vol 168, p13-25.
- Lu X., Chen B.Y., Tan V.B.C., Tay T.E., "A separable cohesive element for modelling coupled failure in laminated composite materials", *Composites Part A: Applied Science & Manufacturing*, (2018), vol 107, p387-398.
- Chen B.Y., Pinho S.T., De Carvalho N.V., Baiz P.M., Tay T.E., "A floating node method for the modelling of discontinuities within a finite element", Engineering Fracture Mechanics, (2014), vol 127, p104–134.
- Chen B.Y., Tay T.E., Pinho S.T., Tan V.B.C., "Modelling the tensile failure of composites with the floating node method", *Computer Methods in Applied Mechanics and Engineering*, (2016), vol 308, p414-442.
- Zhi J., Tay T.E., "Interrogating failure mechanisms of notched composites through a discrete crack modeling approach", Composites Science & Technology, (2020), vol 196, 108203.
- Zhi J., Chen B.Y., Tay T.E., "Geometrically nonlinear analysis of matrix cracking and delamination in composites with floating node method", *Computational Mechanics*, (2019), vol 63, no 2, p201-217.
- Lu X., Ridha M., Tan V.B.C., Tay T.E., "Adaptive discrete-smeared crack (A-DiSC) model for multi-scale progressive damage in composites", *Composites Part A: Applied Science & Manufacturing*, (2019), vol 125, 105513.
- Lu X., Guo X.M., Tan V.B.C., Tay T.E., "From Diffuse Damage to Discrete Crack: A Coupled Failure Model for Multi-stage Progressive Damage of Composites", *Computer Methods in Applied Mechanics and Engineering*, (2021), vol 379, 113760.
- Leong K.H., Zhi J., Lee H.P., Tan V.B.C., Tay T.E., "Adaptive multi-fidelity (AMF) modelling of progressive damage in notched composite laminates", *Composites Part A: Applied Science & Manufacturing*, (2022), vol 154, 106790.
- Leong K.H., Zhi J., Lee H.P., Tan V.B.C., Tay T.E., "Adaptive Multi-Fidelity (AMF) modelling of delamination migration under bending", Composite Structures, (2023), vol 305, 116549.


Concurrent Multiscale Modeling of Composites with Direct FE²

Vincent B.C. Tan – colleague


- FE² simulations allows for the analyses of structures made from heterogeneous materials without the need for homogenized material models
- Direct FE² reduces the two separate and concurrent simulations at 0 macro- and mirco-scales required in FE² to a single simulation
- Direct FE² can be carried out on directly on commercial FE codes 0
- Features already on commercial codes (e.g., finite deformation, 0 viscoplasticity, damage models) remain available without any user intervention
 - Tan V.B.C., Raju K., Lee H.P., "Direct FE² for concurrent multi level modelling of heterogeneous structures", Computer Methods in Applied Mechanics and Engineering, (2019), 112694.
 - Raju K., Tay T.E., Tan V.B.C., "A review of the FE2 method for composites", Multiscale and ٠ Multidiscip. Model. Exp. and Des., (2021), vol 4, 1-24.

Multiscale FE² modelling of composites using shear-flexible beam elements

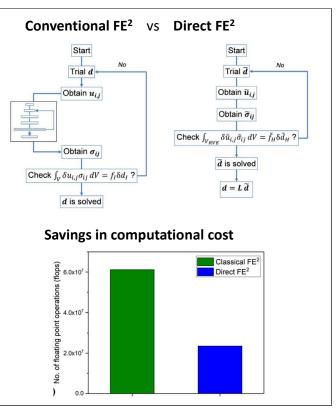


Slide courtesy of Vincent Tan

1. Direct FE2 for concurrent multilevel modelling of heterogeneous structures, (2020) CMAME, 360, 112694.

- 2. A review of the FE2 method for composites, (2021) Multiscale and Multidisciplinary Modeling, Exp and Des, 4 (1).
- 3. Direct FE2 for simulating strain-rate dependent compressive failure of cylindrical CFRP, (2021) Comp Part C, 5, 100165.
- 4. Analysis of nonlinear shear and damage behaviour of angle-ply laminates with Direct FE2, (2021) CST, 216, 109050.
- 5. Transient multi-scale analysis with micro-inertia effects using Direct FE 2 method, (2021) Comp Mech, 67 (6).
- 6. Multiscale analysis of thermal problems in heterogeneous materials with Direct FE2 method, (2021) IJNME, 122 (24).
- Multiscale computational homogenisation of shear-flexible beam elements: a Direct FE2 approach, (2022) Comp Mech, 70 (5).
- Direct FE2 for concurrent multilevel modelling modeling of heterogeneous thin plate structures, (2022) CMAME, 392, 114658.
- Direct FE2 modeling of heterogeneous materials with a micromorphic computational homogenization framework, (2022) CMAME, 393, 114837.

First report of Direct FE² using CFRP beam as example. Demonstrated large deformation and material nonlinearity.



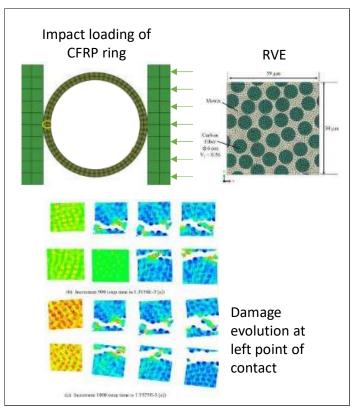
Slide courtesy of Vincent Tan

- 1. Direct FE2 for concurrent multilevel modelling of heterogeneous structures, (2020) CMAME, 360, 112694.
- 2. A review of the FE2 method for composites, (2021) Multiscale and Multidisciplinary Modeling, Exp and Des, 4 (1).
- 3. Direct FE2 for simulating strain-rate dependent compressive failure of cylindrical CFRP, (2021) Comp Part C, 5, 100165.
- 4. Analysis of nonlinear shear and damage behaviour of angle-ply laminates with Direct FE2, (2021) CST, 216, 109050.
- 5. Transient multi-scale analysis with micro-inertia effects using Direct FE 2 method, (2021) Comp Mech, 67 (6).
- 6. Multiscale analysis of thermal problems in heterogeneous materials with Direct FE2 method, (2021) IJNME, 122 (24).
- Multiscale computational homogenisation of shear-flexible beam elements: a Direct FE2 approach, (2022) Comp Mech, 70 (5).
- Direct FE2 for concurrent multilevel modelling modeling of heterogeneous thin plate structures, (2022) CMAME, 392, 114658.
- Direct FE2 modeling of heterogeneous materials with a micromorphic computational homogenization framework, (2022) CMAME, 393, 114837.

Reviewed applications of FE^2 in composites and showed how the monolithic scheme of Direct FE^2 reduces computational cost.

Slide courtesy of Vincent Tan

In Collaboration with Jun Koyanagi, Tokyo University of Science.

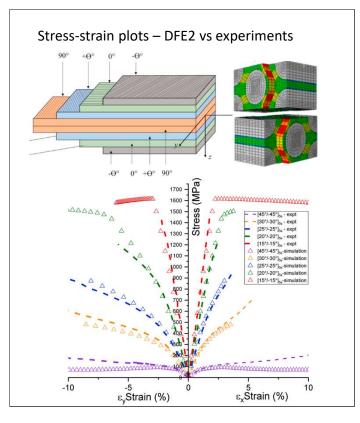


- 1. Direct FE2 for concurrent multilevel modelling of heterogeneous structures, (2020) CMAME, 360, 112694.
- 2. A review of the FE2 method for composites, (2021) Multiscale and Multidisciplinary Modeling, Exp and Des, 4 (1).

3. Direct FE2 for simulating strain-rate dependent compressive failure of cylindrical CFRP, (2021) Comp Part C, 5, 100165.

- 4. Analysis of nonlinear shear and damage behaviour of angle-ply laminates with Direct FE2, (2021) CST, 216, 109050.
- 5. Transient multi-scale analysis with micro-inertia effects using Direct FE 2 method, (2021) Comp Mech, 67 (6).
- 6. Multiscale analysis of thermal problems in heterogeneous materials with Direct FE2 method, (2021) IJNME, 122 (24).
- Multiscale computational homogenisation of shear-flexible beam elements: a Direct FE2 approach, (2022) Comp Mech, 70 (5).
- Direct FE2 modeling of heterogeneous materials with a micromorphic computational homogenization framework, (2022) CMAME, 393, 114837.
- Direct FE2 for concurrent multilevel modelling modeling of heterogeneous thin plate structures, (2022) CMAME, 392, 114658.

Using substantially larger RVEs, evolution of microstructural damage in rate-sensitive carbonepoxy composite was modeled.

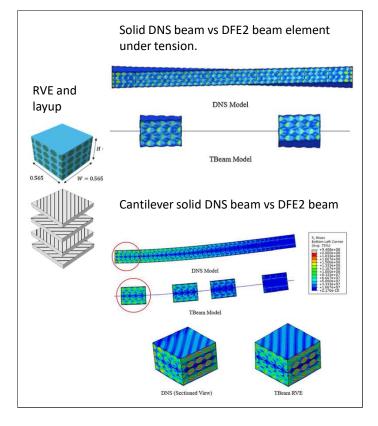

Slide courtesy of Vincent Tan

- 1. Direct FE2 for concurrent multilevel modelling of heterogeneous structures, (2020) CMAME, 360, 112694.
- 2. A review of the FE2 method for composites, (2021) Multiscale and Multidisciplinary Modeling, Exp and Des, 4 (1).
- 3. Direct FE2 for simulating strain-rate dependent compressive failure of cylindrical CFRP, (2021) Comp Part C, 5, 100165.

4. Analysis of nonlinear shear and damage behaviour of angleply laminates with Direct FE2, (2021) CST, 216, 109050.

- 5. Transient multi-scale analysis with micro-inertia effects using Direct FE 2 method, (2021) Comp Mech, 67 (6).
- 6. Multiscale analysis of thermal problems in heterogeneous materials with Direct FE2 method, (2021) IJNME, 122 (24).
- Multiscale computational homogenisation of shear-flexible beam elements: a Direct FE2 approach, (2022) Comp Mech, 70 (5).
- Direct FE2 for concurrent multilevel modelling modeling of heterogeneous thin plate structures, (2022) CMAME, 392, 114658.
- Direct FE2 modeling of heterogeneous materials with a micromorphic computational homogenization framework, (2022) CMAME, 393, 114837.

DFE² enabled interaction of fibre rotation, matrix plasticity and cracks to predict σ vs ε plots of angleplys matching experiments



Slide courtesy of Vincent Tan

- 1. Direct FE2 for concurrent multilevel modelling of heterogeneous structures, (2020) CMAME, 360, 112694.
- 2. A review of the FE2 method for composites, (2021) Multiscale and Multidisciplinary Modeling, Exp and Des, 4 (1).
- 3. Direct FE2 for simulating strain-rate dependent compressive failure of cylindrical CFRP, (2021) Comp Part C, 5, 100165.
- 4. Analysis of nonlinear shear and damage behaviour of angle-ply laminates with Direct FE2, (2021) CST, 216, 109050.
- 5. Transient multi-scale analysis with micro-inertia effects using Direct FE 2 method, (2021) Comp Mech, 67 (6).
- 6. Multiscale analysis of thermal problems in heterogeneous materials with Direct FE2 method, (2021) IJNME, 122 (24).
- Multiscale computational homogenisation of shear-flexible beam elements: a Direct FE2 approach, (2022) Comp Mech, 70 (5).
- Direct FE2 for concurrent multilevel modelling modeling of heterogeneous thin plate structures, (2022) CMAME, 392, 114658.
- Direct FE2 modeling of heterogeneous materials with a micromorphic computational homogenization framework, (2022) CMAME, 393, 114837.

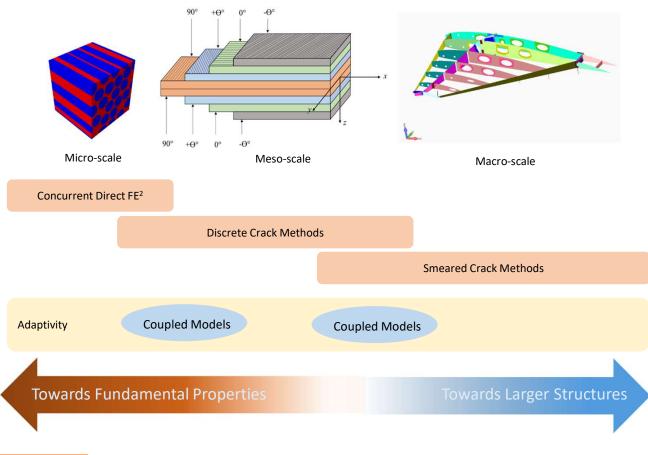
DFE² has been extended to shear deformable beam elements with examples on CFRP beams.

Future Research Topics / Questions

• Thermoplastic Composites:

Competition between Mechanisms: Discrete Damage and Plasticity

OHT Modeling:


Is it possible to predict thick laminates behavior without hi-fidelity modeling? ANN? Physics-Informed Reduced-Order Modeling? Double-Double (DD) Laminates with Homogenization

- <u>Adaptive DNS-FE²</u> modeling for Progressive Failure?
- Development of an Explicit Multi-Fidelity Model for Large Structures?

Conclusion

Multi-Fidelity Multi-Scale Modeling of Progressive Damage

Contact: mpetayte@nus.edu.sg

Department of Mechanical Engineering, National University of Singapore