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Background:
Offshore energy

[1] Bastien Taormina, PhD thesis, 2019
[2] https://www.irena.org/publications/2021/Jul/Offshore-Renewables-An-Action-Agenda-for-Deployment 3



Problem:

Material degradations

• Lightweight composite materials have been widely 
used in offshore energy (e.g. wind blades). 

• In service, the offshore structures continuously 
experiences extreme weather conditions.

• Particularly the effect of loading conditions, 
temperature, moisture is detrimental. 
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Moisture: Multiphysics degradation mechanisms

➢ Exposure to moisture can degrade the mechanical properties of composite materials.

➢ Our aim: To develop fully-coupled computational models for moisture-assisted degradation.

[1] David A., Bond and Paul A. Smith. (2006): 249-268.

 Moisture diffusion

 Matrix swelling

 Plastication or Hydrolysis

 Interface debonding

➢ State-of-art: Modelling moisture-assisted degradation of composites remains relatively unexplored.



State-of-art: Modelling moisture-assisted degradation in composites remains relatively unexplored

[1] Arash, B., Exner, W., Rolfes, R. Engineering with Computers (2022).

[2] Ye, J.-Y., Zhang, L.-W Computer Methods in Applied Mechanics and Engineering 388, 114213 (2022).

◼ The moisture transport problem was not 
explicitly resolved and, instead, a uniform 
moisture distribution was assumed. 

[Arash et al. 2022]

◼ “Crack filter theory” is proposed to 
regularise the sharp fibre-matrix interface 
and controls the moisture fluxes. 

◼ Finding the coefficients for the crack filter 
functions remains a challenge.

[Ye et al. 2022]
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Fully coupled multiphysics phase field model

 The interplay between moisture diffusion, hygroscopic expansion, crack evolution and stress redistribution. 

8[1] Au-Yeung K, Quintanas-Corominas A, Martínez-Pañeda E., Tan W, Engineering with Computer (2023)



Mass transport: Moisture diffusion

➢ Fick’s law 

➢ Chemical potential of moisture

➢ Mass flux (Linear Onsager)

➢ Balance equation (mass conservation)

➢ The weak form of moisture diffusion: 

9[1] Au-Yeung K, Quintanas-Corominas A, Martínez-Pañeda E., Tan W, Engineering with Computer (2023)



Deformation: The effect of moisture

➢ Hygroscopic strain

➢ Cauchy stress

Moisture concentration leads to the 
presence of hygroscopic strains:

➢ Moisture-dependent fracture toughness: 

10[1] Au-Yeung K, Quintanas-Corominas A, Martínez-Pañeda E., Tan W, Engineering with Computer (2023)



Damage: Phase field fracture model

➢ Griffith’s energy balance [Griffith, 1920]

➢ Variational approach to fracture [Francfort and Marigo, 1998]

➢ Coupled field equations: 

➢ Phase field fracture [Bourdin et al., 2008, Miehe et al., 2010]



➢ Crack increases the diffusion coefficient: 
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(a) phase field interface indicator 

(b) interpolation of material toughness across the interface

Diffuse interface (Phase field)

Challenge: Sharp interfaces can not model the 
moisture diffusion and represent the graded interface. 

➢ A diffuse transition zone between 
the fibre and matrix: 

➢ An interpolation function:

12[1] Ye, J.-Y., Zhang, L.-W Computer Methods in Applied Mechanics and Engineering 388, 114213 (2022).
[2] Au-Yeung K, Quintanas-Corominas A, Martínez-Pañeda E., Tan W, Engineering with Computer (2023)

Graded 
structure



Finite element discretisation 

The weak form for the coupled deformation-phase field fracture problem is formulated as:

The deformation, diffusion and phase field fracture problems are weakly coupled. 

It is solved in an incremental manner, using the Newton-Raphson method. The solution 
scheme follows a so-called staggered approach.
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The effect of moisture on fracture toughness: Mode I vs Mode II 
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Mode I: (Toughening)

Mode II: (Embrittlement)

[1] Sugiman, S., Putra, I.K.P. and Setyawan, P.D., Polymer Degradation and Stability, 134, pp.311-321 (2016).
[2] Johar, M., Chong, W.W.F., Kang, H.S. and Wong, K.J., 2019. Polymer degradation and stability, 165, pp.117-125.



(or Diffused interface)

Case study 1:  Moisture content on the fracture toughness (mode I) 

• The actual microstructure of the composite is simulated by an embedded cell in the fracture process 
zone, while the remaining area is homogenised to be an elastic anisotropic solid.

Single-notched three point bending

16
[1] Tan W, Martínez-Pañeda E., Composites Science and Technology (2021)
[2] Tan W, Martínez-Pañeda E., Composites Structures (2022), 115242



Microscopic crack growth and fracture toughness (Validation)

[1] Tan W, Martínez-Pañeda E., Composites Science and Technology (2021)

[Canal et al. 2012 ] Cohesive zone (I) + PFM (M)
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Constituents 𝐸 (GPa) 𝑮𝒄 (kJ/m2)

Glass fibre 74 0.135

Epoxy matrix 3.5 0.010

Interface 5.0 0.005



Now consider the moisture effect:
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Moisture diffusion

Diffused interface

Graded material properties



The effect of moisture on crack trajectories 

[Canal et al. 2012]

Experiment-Dry Cohesive zone-Dry Diffuse interface-Dry Diffuse interface-Wet

𝜙

Phase field 
damage
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• Diffuse interface model shows a diffused crack propagation. 
• The moisture content impedes the crack propagation under mode I loading.



Load-displacement curves

Exp

R-curves

Exp

DiffInt-Wet

DiffInt-Dry

CZM-Dry

The effect of moisture on fracture toughness
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• The fracture resistance increases with the increasing moisture contents.



22

𝐶
(%

)

𝑃, δ

Case study 2: A single notched sample under shear loading (mode II)

Constituents 𝐸 (GPa) 𝑮𝒄 (kJ/m2) 𝑫 (mm2/s) 𝜶

Flax fibre 10.2 2.1 1.19×10-6 1.06

Polymer 3.5 1.2 1.45×10-6 0.6

Interface 4.0 0.213 0.8×10-6 0.1

𝑥

𝑦

𝑧

• The moisture concentration 7.45% is 
applied at the left edge and notch area.

• The end-notch shear load is applied. 

• Moisture and mechanical loading are 
applied concurrently. 

Boundary condition

Material propertiesEnd-notch shear:



Comparison of Composite Failure Under Moisture Absorption 

No Moisture

𝑊𝑐 = 3.92 𝐽/𝑚2

𝑊𝑐 = 4.74𝐽/𝑚2

Moisture Absorption
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 The moisture degrades material 
toughness.
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Case study 3: Representative volume element under shear loading (mode II)

𝑃, δ

𝐶
(%

)

Simple shear:

Periodic boundary condition

• The opposite faces should deform identically:

𝑥

𝑦

𝑧

Constituents 𝐸 (GPa) 𝑮𝒄 (kJ/m2) 𝑫 (mm2/s) 𝜶

Flax fibre 10.2 2.1 1.19×10-6 1.06

Polymer 3.5 1.2 1.45×10-6 0.6

Interface 4.0 0.213 0.8×10-6 0.1

Material properties



Comparison of Composite Failure Under Moisture Absorption 

No Moisture Moisture Absorption

𝑊𝑐 = 8.87 𝐽/𝑚2

𝑊𝑐 = 15.74 𝐽/𝑚2

 The moisture degrades material 
toughness.



Summary
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• We have presented a new phase field-based multi-physics framework to model 
moisture-induced degradation in composite materials. 

• A novel diffuse interface approach is presented to interpolate relevant properties along 
the fibre-matrix interface. 

• The moisture contents promote the mode I fracture resistance and degrades the mode II 
fracture resistance. 

Mode IIMode I

Future work
• Conduct experiments under environmental conditions to further validate our model.
• Enhance the efficiency of the calculations by incorporating adaptive mesh refinement.

Diffused interface



27

Research sponsors:

Industrial partners:

 Open-source research codes: 
➢ www.imperial.ac.uk/mechanics-materials/codes

➢ wtanlab.com/codes/

Thank you for your attention!
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