

THE EFFECT OF GRAPHENE AS A MULTIFUNCTIONAL ADDITIVE FOR CARBON-FIBER COMPOSITES IN CRYOGENIC ENVIRONMENTS

ICCM 23 | **30 July – 04 August** | Eduardo Szpoganicz¹, Fabian Hübner², Uwe Beier², Matthias Geistbeck², Maximilian Korff³, Andreas Scherer³, Martin Demleitner¹, Holger Ruckdäschel¹

¹ Polymer Engineering Department, University of Bayreuth, Bayreuth, Germany
² Airbus Central Research and Technology, Munich, Germany
³ Mechanical Engineering Department, Bundeswehr University Munich, Munich, Germany

Department of Polymer Engineering | Prof. Dr.-Ing. H. Ruckdäschel | www.polymer-engineering.de

INTRODUCTION

Hydrogen – Towards zero-emission technologies

INTRODUCTION

Hydrogen – Towards zero-emission technologies

© AIRBUS 2023 https://www.airbus.com/en/innovation/zero-emission-journey/hydrogen/zeroe;

© ESA 2023, https://www.esa.int/Enabling_Support/Space_Transportation/Future_space_transportation/Tests_prove_carbon-fibre_fuel_tank_for_Phoebus_upper_stage

Hydrogen – Towards zero-emission technologies

Ultra-light weight hydrogen tanks promises to make jet fuel out of date

Hydrogen – Towards zero-emission technologies

- Performing in cryogenic environments (20 K)
 - Temperature-swing implies critical thermal stress
 - Hydrogen permeates through the CFRP layer
 - Microcrack development

1

- Improves matrix-fiber interaction
- Reduce matrix-fiber CTE difference

Baco rocin

1

• Reduce matrix-fiber CTE difference

Hydrogen barrier properties

> Raco rocin

- Improves matrix-fiber interaction
- Reduce matrix-fiber CTE difference

Hydrogen barrier properties

Baco rocin

• Stiffening of the matrix

INTRODUCTION

Hydrogen storage vessel technology

INTRODUCTION

Hydrogen storage vessel technology

What is the influence of **graphene** on the **manufacturing process of the composite?**

Can graphene suppress the CTE property of the CFRP laminate?

Does graphene act as a barrier towards hydrogen permeation?

How will the **graphene** effect the **delamination process** of the CFRP composite

14

METHODS

Prepreg Line – Manufacturing of the composite prepregs

METHODS

Prepreg Line – Manufacturing of the composite prepregs

Manufacturing of prepreg laminates

Viscosity measurements of the Base Resin

Genable X1400: Minor effect on the resin viscosity with 0.1wt% content

Genable 1000: Minor effect on the resin viscosity with 0.1wt% content

Genable 1200: Signigicant effect on resin viscosity with 0.1wt% content

RESULTS

Viscosity measurements of the Base Resin

A

Viscosity measurements of the Base Resin

20

RESULTS

Coefficient of thermal expansion CTE

Coefficient of thermal expansion CTE

Coefficient of thermal expansion CTE

RESULTS

Reference

0.1wt% 1000

0.1wt% 1200

0.1wt% X1400

6

Hydrogen permeation

Hydrogen permeation

der Bundeswehr Universität (ک<u>م</u> München

 10^{-12}

857 J m⁻² 783 J m⁻² 775 J m⁻² 734 J m⁻²

DIN EN ISO 6033

Load cell: 500 N

Displacement rate: 10 mm min⁻¹

N. of specimens: 5

Carbon-fiber volume content: 56-58vol%

Decrease in matrix ductility

DIN EN ISO 6033

Load cell: 500 N

Displacement rate: 10 mm min⁻¹

N. of specimens: 5

Carbon-fiber volume content: 56-58vol%

The use of graphene additives in the base resin **does not promote significant effect** on the manufacturing of the composites

NEXT STEPS

Tensile properties in cryogenic environments 77 K

BG Bavarian Ministry of Economic Affairs, Regional Development and Energy

der Bundeswehr

Technical

University of Munich

Acknowledgements

This project was carried out under the guidance of *Industrieanlagen-Betriebsgesellschaft mbH* (iABG) and financed by the Bavarian Ministry of Economic Affairs, Regional Development and Energy (STmWi) according to the registration number BLU-2109-0024

