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Motivation

• Wrinkling simulations using FE are accurate but not practical for optimisation
• Deep learning models can be accurate with low computational cost
• The effect of tool geometry on wrinkling behaviour is not well understood



Aims

• Develop a deep learning model to predict wrinkling for a range of geometries
• Investigate the relationship between tool geometry and wrinkling
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Material, Layup & Process
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Method Outline
Data Generation
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Data Generation
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Geometry Characterisation
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Data Pre-Processing
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Wrinkle Calculation
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Deep Learning Surrogate Model
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Effect of Tool Geometry on Wrinkling 
By NCF ply in layup

)

  
   

 
   

   

 
   

 f
   

y x
z

NCF1

NCF2

Tool

1 (0°)

0 (45°)

2 (90°)

By NCF shear region
• Asymmetric shear behaviour due to stitch along 

shearing direction
• Different wrinkling modes in each region

• Shear (NS) vs lateral compression (PS)

• [0°/90°,0°/90°] - two NCF layup
• Similar effect for both plies         
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Effect of Tool Geometry - Correlation

Conicity Gauss Curvature Angularity

• Strong correlation • Weak correlation • No correlation

• Evaluation of correlation between geometry characteristics and wrinkle severity
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Model Performance – Test Set

• Test set: 186 geometries
• Not previously seen by surrogate model
• Mean wrinkle amplitudes from deep 

learning surrogate model correlate well 
with FE predictions

      b) Predicted vs Expected Wrinkle Severity



Model Wrinkle Prediction Error

Model Performance – Evaluation Set
Wrinkle Severity 

• Significant effect of geometry on 
wrinkle amplitude

• Reasonable prediction accuracy
• Extrapolation capability limited

Evaluation 
Geometries



Model Computational Cost
Prediction cost (FE vs DL surrogate model)

DL surrogate model development computational cost (hours)

Surrogate Model 
Development 1308

Model Type Computational
Cost/hours

Macroscale FE Model 1.33

Pre-trained Surrogate 
Model

0.000215
(0.7s)



Conclusions
• The effect of tool geometry on wrinkling severity is significant
• Greater tapering  less severe wrinkling
• DL surrogate model can predict fabric wrinkling behaviour during forming
• Surrogate model =  approx. 6000x faster than FE model
• Development cost can be further reduced

Conclusions & Future Work



Conclusions
• The effect of tool geometry on wrinkling severity is significant
• Greater tapering  less severe wrinkling
• DL surrogate model can predict fabric wrinkling behaviour during forming
• Surrogate model =  approx. 6000x faster than FE model
• Development cost can be further reduced

Future Work
• Numerical variability of wrinkle patterns
• Optimisation of a case study geometry
• Transfer learning to improve extrapolation
• Extension to industrially relevant geometries

Conclusions & Future Work
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