

Engineering and Physical Sciences Research Council

A machine learning based tool for predicting geometry-induced wrinkles in fabric preforming Verner Viisainen¹, Fei Yu², Andrea Codolini¹, Shui Chen², Lee Harper², Michael Sutcliffe¹ HEXC Universities of Cambridge (1) and Nottingham (2) ICCM23 30 July – 4 August 2023 University of BRISTOL University Brunel **Cranfield** University of Glasgow Imperial College Southampton Wrexham MANCHESTER University of Slvndŵ University Nottingham London Sheffield

- Wrinkling simulations using FE are accurate but not practical for optimisation
- Deep learning models can be accurate with low computational cost
- The effect of tool geometry on wrinkling behaviour is not well understood

- Develop a deep learning model to predict wrinkling for a range of geometries
- Investigate the relationship between tool geometry and wrinkling

Outline

- Motivation and Aims
- Material and Process
- Method
 - -Data Generation
 - -Data Pre-processing
 - -Surrogate Model

Results

- -Effect of Tool Geometry
- -Model Performance
- -Computational Cost
- Conclusions and Future Work

Material, Layup & Process

Material Hexcel `FCIM359' Biaxial carbon NCF ±45°, pillar stitch

Forming Process: Double diaphragm forming

Layup: [0°/90°,0°/90°], stitch along 45°

Method Outline

Model

CIMComp

FPSRC

Data Generation

Data Pre-Processing

Deep Learning Surrogate Model

Effect of Tool Geometry on Wrinkling

By NCF ply in layup

- [0°/90°,0°/90°] two NCF layup
- Similar effect for both plies

By NCF shear region

- Asymmetric shear behaviour due to stitch along shearing direction
- Different wrinkling modes in each region
 - Shear (NS) vs lateral compression (PS)

Note: probability density distributions based on all 1802 simulated tool geometries

Effect of Tool Geometry - Correlation

• Evaluation of correlation between geometry characteristics and wrinkle severity

CIMComp

Future Composites

Manufacturing Research Hub

Model Performance – Test Set

- Test set: 186 geometries
- Not previously seen by surrogate model
- Mean wrinkle amplitudes from deep learning surrogate model correlate well with FE predictions

Model Performance – Evaluation Set

Wrinkle Severity

Model Wrinkle Prediction Error

 Significant effect of geometry on wrinkle amplitude

- Reasonable prediction accuracy
- Extrapolation capability limited

Model Computational Cost

_

Prediction cost (FE vs DL surrogate model)

Model Type	Computational Cost/hours
Macroscale FE Model	1.33
Pre-trained Surrogate Model	0.000215 (0.7s)

DL surrogate model development computational cost (hours)

Surrogate Model Development	1308
--------------------------------	------

Conclusions & Future Work

Conclusions

- The effect of tool geometry on wrinkling severity is significant
- Greater tapering \rightarrow less severe wrinkling
- DL surrogate model can predict fabric wrinkling behaviour during forming
- Surrogate model = approx. 6000x faster than FE model
- Development cost can be further reduced

Conclusions & Future Work

Conclusions

- The effect of tool geometry on wrinkling severity is significant
- Greater tapering → less severe wrinkling
- DL surrogate model can predict fabric wrinkling behaviour during forming
- Surrogate model = approx. 6000x faster than FE model
- Development cost can be further reduced

Future Work

- Numerical variability of wrinkle patterns
- Optimisation of a case study geometry
- Transfer learning to improve extrapolation
- Extension to industrially relevant geometries