DESIGN, MANUFACTURING, TESTING AND OPTIMIZATION OF BOLT LOADED VARIABLE-AXIAL COMPOSITE LAMINATES

TWENTY-THIRD INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS (ICCM23)

Belfast | 30th July - 04th August 2023

<u>Axel Spickenheuer</u>^{1,*}, Tales V. Lisbôa¹, E.A.W. de Menezes¹, Markus Stommel^{1,2}, Kai Uhlig¹, Lars Bittrich¹, Andreas Freund³

1 Leibniz-Institute für Polymerforschung Dresden e. V.; 2 TU Dresden, Institute of Material Science; 3 Realize Engineering Dresden GmbH

Fiber-reinforced plastics (FRP)

ipf

Multi-axial vs. variable-axial

Composite design 1.0

multi-axial

Composite design 2.0

variable-axial

 $\alpha \neq const.$

s ≠ const. t = f(s)

Fiber-reinforced plastics (FRP)

Variable-axial FRP by Tailored Fiber Placement (TFP)

Composite design 2.0

variable-axial

 $\alpha \neq const.$

 $s \neq const.$ t = f(s)

Fiber-reinforced plastics (FRP)

Variable-axial FRP by Tailored Fiber Placement (TFP)

Composite design 2.0

variable-axial

 $\alpha \neq const.$

 $s \neq const.$ t = f(s)

Variable-axial composites made by Tailored Fiber Placement

From basic research to industrial deployment

TRL1 TRL7

Multi-scale modelling and optimization methods

Process chain for variableaxial composites

Development of industrial components

How to design variable-axial composite structures?

Analysis and optimization of bolted joints made by variable-axial laminates

What in-plane fiber orientation strategy shows advantageous mechanical performance?

- Calibration of progressive damage simulation for structural optimization by experimental research
- No consideration of out-of-plane reinforcements

Dimensions of specimen

 $R_1 = 25 \text{ mm}, R_2 = 7.5 \text{ mm},$ $L = 170 \text{ mm}, t \approx 5 \text{ mm}$

Bolted joints with tailored fiber orientation in literature

1997 Composites Part A 28A (1997) 619–625 © 1997 Published by Elsevier Science Limited Printed in Great Britain. All rights reserved 1359-835X/97/\$17.00 Tailored fibre placement to minimise stress concentrations P. J. Crothers**, K. Drechsler*, D. Feltin*, I. Herszberg* and T. Kruckenberg* *The Sir Lawrence Wackett Centre for Aerospace Design Technology, Royal Melbourn Institute of Technology, P.O. Box 2476V, Melbourne, Vic. 300. Australia *Daimler Benz AG, Research and Technology, P.O.Box 80 04 65, 81663 Munich, Germany °Institute for Polymer Research Dresden (IPF-Dresden), Hohe Straße 6, D-01069 Institute on conjune nesental pressure in representations. The Composite Structures (CRC-ACS) Ltd, 506 Lorimer St., Fishermens Bend, Vic. 3207, Australia (Received 16 February 1996; accepted 8 November 1996) Tension Plate Tension Plate: Single-bolt loading. Open hole. Single-bolt loading Bolt as rigid body Bolt as non-rigid body Pattern from nast study

Tension Strut:

Double-bolt loading

Bolt as rigid body.

Tension Plate &

Tension Strut:

Single and Double-bolt Loading

2002

Composite Structures 57 (2002) 377-383

COMPOSITE STRUCTURES

www.elsevier.com/locate/compstruc

Strength improvement by fibre steering around a pin loaded hole

R. Li a, D. Kelly a.*, A. Crosky b

School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney NSW 2052, Australia b School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052, Australia

Fig. 9. Reduction of fibre over stacking: (a) FEA pattern; (b) modified pattern.

Fig. 10. Effect of fibre steering on strength of the carbon fibre bolted joints.

Tension Strut:

Double-bolt loading

Bolt as non-rigid body.

Figure 5 Patterns for TFP reinforcement of test component

Bolted joints with tailored fiber orientation in literature

2006 Improving the Efficiency of Fiber **Steered Composite Joints using** Load Path Trajectories* R. LI, D. KELLY, I, A. CROSKY, H. SCHOEN AND L. SMOLLICH School of Mechanical and Manufacturing Engineering University of New South Wales, Sydney 2052, Australia ²School of Materials Science and Engineering University of New South Wales, Sydney 2052, Australia (Received February 16, 2005) - B90-1 .. B90-2 B90-3 Figure 2. Principal stress trajectories for fiber placemen HTA70-2 - HTA70-4 Displacement (mm) Figure 11. Test curves for 70 mm wide steered fiber specimens.

Bolted joints with tailored fiber orientation

Steps for optimizing design process

VA pattern design based on isotropic calculations

Principal Stress (PS) Design

VA pattern design based on isotropic calculations

Load Path (LP) Design [1]

Calculation of Load Path directions

$$\tan \alpha_y = \frac{\sigma_{12}}{\sigma_{11}}$$

---- Contour line

Manufacturing of specimen

Manufacturing of specimen

Roving material: CF-HT, 400 tex (6k)

Base material: CF-HT woven fabric,

 $m_A = 380 \text{ g/m}^2$

Thickness adapted RTM molds

Epoxy resin: L20 + EPH 161

Specimen specification and experimental setup [2]

 $[0/90/\pm45]_{4S}$ (base material only)

 $[LP/\pm 45]_{4S}$

[PS2/PS1/±45]_{4S}

Test setup

- Instron 8088 with hydraulic clamping
- 250 kN load cell
- Preload: 50 N
- Test speed 1 mm/min
- Number of specimens: 6

Variable-axial specimens are about 22 % lighter than QI type

Results: Tensile test force-displacement diagram

Results: Tensile test force-displacement diagram

Results: Quasi-plastic deformation energy

Results: Quasi-plastic deformation energy

Model calibration

FE-modelling and material parameters

Numerical material parameters (ϕ = 55 %)

Fiber, Matrix	Composite
E _{,f} = 238,000 Mpa	σ _{,t} = 1,409 Mpa
E _{⊥,f} = 16,000 MPa	σ _{,c} = -7,40 MPa
G _{⊥,f} = 50,000 MPa	$\sigma_{\perp,\mathbf{t}}$ = 80 MPa
$v_{\perp \parallel,f}$ = 0.27	$\sigma_{\perp,c}$ = -140 MPa
E _M = 3,150 MPa	$\tau_{\perp \parallel}$ = $\tau_{\perp \perp}$ = 69 MPa
G _M = 1,150 MPa	
$v_{M} = 0.37$	

Model calibration

Progressive damage simulation with parameter identification by FEMU

HASHIN Failure Criterion [3]

$$\begin{aligned} &\text{Fiber} \ \begin{cases} X_{FT} = \left(\frac{\sigma_{11}}{F_{1T}}\right)^2 + \left(\frac{\sigma_{12}^2 + \sigma_{13}^2}{F_6}\right) & \sigma_{11} \geq 0 \\ X_{FC} = \left(\frac{\sigma_{11}}{F_{1C}}\right)^2 & \sigma_{11} < 0 \end{cases} \\ &\begin{cases} X_{MT} = \left(\frac{\sigma_{22}}{F_{2T}}\right)^2 + \left(\frac{\sigma_{23}}{F_4}\right)^2 + \frac{\sigma_{12}^2 + \sigma_{13}^2}{F_6^2} & \sigma_{22} \geq 0 \\ X_{MC} = \frac{\sigma_{22}}{F_{2C}} \left[\left(\frac{F_{2C}}{2F_4}\right)^2 - 1\right] + \left(\frac{\sigma_{22}}{2F_4}\right)^2 \\ &+ \left(\frac{\sigma_{23}}{F_4}\right)^2 + \frac{\sigma_{12}^2}{F_6^2} & \sigma_{22} < 0 \end{cases} \end{aligned}$$

Progressive damage modelling [3]

$$d_{f} = \begin{cases} d_{ft} & \sigma_{11} \ge 0 \\ d_{fc} & \sigma_{11} < 0 \end{cases} \qquad d_{m} = \begin{cases} d_{mt} & \sigma_{22} \ge 0 \\ d_{mc} & \sigma_{22} < 0 \end{cases}$$
$$d_{s} = 1 - (1 - d_{ft}) (1 - d_{fc}) (1 - d_{mt}) (1 - d_{mc})$$

Model calibration

Progressive damage simulation with parameter identification by FEMU

Stiffness degradation parameters [4] $\rho = \{d_{ft} \quad d_{fc} \quad d_{mt} \quad d_{mc}\}$

$$\min_{\rho \in [0,1]} L_2(\rho) = \min_{\rho \in [0,1]} \quad \frac{1}{n_{ptos}} \sqrt{\sum_{i=1}^{n_{ptos}} \left(\frac{y_i^E - y_i^N(\rho)}{y_i^E}\right)^2}$$

Genetic Algorithm-based [4]

PS Design – Comparison exp. vs. num. results

Conclusion and Outlook

Bolt joint loaded composites with a variable-axial fiber design shows improved quasi-plastic behavior compared to QI multi-axial laminate.

- Optimality based PS design shows higher mass energy absorption than LP design
- By help of experimental tests a progressive damage modelling setup was identified

Optimization of variable-axial fiber patterns by using, e.g., DFPO [5]

- Optimizing for maximal mass-specific loads
- Optimizing for even higher energy absorption

Comparison PS1+PS2 vs. PS1 only pattern specimen

ipf

Prof. Dr.-Ing. Axel Spickenheuer

Leibniz-Institut für Polymerforschung Dresden e. V.

Phone: +49 351 4658 374

E-Mail: spickenheuer@ipfdd.de

Web: www.ipfdd.de/tfp-technology

Research group *Complex Structural Components*

Acknowledgement

Karthick Selvaraj, Nicole Schmidt, Falk Hähnel, Gustavo de Abreu Cáceres, and Leonardo Chiquita

Thank you for your attention