Hybrid, Multifunctional 3D Printed Nanocomposite Strain Sensors

Aaron Soul, Han Zhang, Emiliano Bilotti, Dimitrios Papageorgiou

1.1 Introduction

Why 3d printed Strain Sensors?

- Complex Internal Designs
- Tunable Structures

Challenges?

- Material Melt Viscosity
- Feeding Elastic Materials

Sliced Model

Printing

Hybrid Fillers?

- Network made up for 2+ fillers
- Hybrid fillers can offer:
 - Improved electrical conductivity
 - A range of mechanical properties
 - Cost-effectiveness compared to single
- Combine high conductivity with higher strains at break.
- Optimized processability
- Increased sensing range

Strain Sensor

1.2 Hybrid Composites

Matrix:

- Thermoplastic Polyurethane / TPU

Fillers:

- Carbon Nano Tubes / CNT
- Graphene Nano Platelets / GNP
- Boron Nitride / BN

Exclusion Theory

- Occupied space by non or less conductive fillers confines the conductive fillers and densifies the conductive network.

CNT Network

CNT / GNP Network

CNT / BN Network

1.3 Sample Preparation

Base Material:

- TPU_20wt%_CNT Masterbatch Compounded with Twin Screw.

Functional materials:

- GNP & BN added using Xplore 15HT Micro Compounder

Table of Materials: Hybrids are 50:50 wt% Mix

Total Filler / wt%	2	5	8	10
CNT	CNT_2	CNT_5	-*	-*
GNP_CNT_Hybrid	CNT_1_GNP_1	CNT_2.5_GNP_2.5	CNT_4_GNP_4	CNT_5_GNP_5
BN_CNT_Hybrid	CNT_1_BN_1	CNT_2.5_BN_2.5	CNT_4_BN_4	CNT_5_BN_5

*CNT_8/10 not tested as unable to process 1.75mm filaments, high viscosity/ brittle extrusion

2.1 Mechanical Analysis – Compression Moulded

- Higher filler content improves conductivity but has limited effect on strain at break and modulus.
- Beyond 5wt% total filler, the increase in conductivity is not significant compared to the reduction in strain at break and increase in modulus.
- CNT_BN hybrids have increased strain at break at higher filler loadings, making them more suitable for sensors than CNT_GNP hybrids.

*CNT_8/10 not tested as unable to process 1.75mm filaments, high viscosity/ brittle extrusion

2.2 Filament Production

Xplore Micro Compounder

3D printed continuous twin screw feeder

3Devo filament maker

TPU_CNT_2.5_GNP_2.5 Filament

2.3 Printed Properties

*CNT_10_BN_0_GNP_0: Broke at **64%** strain FDM Printed with 1.4mm nozzle Layer Height 0.35mm

3.1 Sensing

CNT

R/R0

10³ •

10²

10¹

R² = 1.00 G_exp = 3.00

300

Sensing_limit = 84 %

200

Strain / %

100

CNT _ BN

CNT_2.5_BN_2.5_GNP_0_S_1 10⁶ Data • Exponential Fit 105 10^{4} R/R0 10³ 10² $R^2 = 0.97$ G_exp = 3.81 10¹ Sensing_limit = 125 % 100 200 300 0 Strain / %

CNT_5_BN_5_GNP_0_S_3

CNT _ GNP

CNT_5_BN_0_GNP_5_S_1

*G_EXP, is the Gauge Factor fitted to a Y logged graph. Higher Gauge Factor = Greater Amount Sensing

3.2 Strain Sensing, Cyclic

- CNT BN Hybrids show a clear correlation between strain and resistance when cyclically loaded.
- Large amount of sensing noise present due to breakdown of copper mesh/ sample interface when repeatedly loaded.

3.3 Strain Sensing, Non-regular Cyclic

Negative Poisson's Ratio Strain Sensor

- Made form interlocking 6 sided polygons.
- Designed to expand in all directions when strained.
- Graph:
 - Clear spikes as the sensor is stretched
 - Genital relaxation / reduction in resistance as the sensor contracts a slower rate than the strain is removed at.

4.1 Conclusions:

- Conductive fillers in thermoplastic elastomers present a promising avenue for innovative research, but their processability currently hinders their application in 3D printing.
- Utilizing hybrids in the development of printable strain sensors could address the challenge of balancing conductivity and processability.
- TPU_5_CNT_5_BN hybrids demonstrated a well-defined strain resistance trend with a near logarithmic fit, facilitating straightforward sensor calibration.
- These hybrids exhibited a high sensing range of up to 250%, indicating their potential for capturing a wide range of strain values at high accuracy.

Thank You Any Questions?

4.1 Next Steps:

- Slicing parameters:
 - Infill
 - Printing type: (Layer by layer/ Continuous)
- Print Orientation:
 - Printing in direction of strain / Printing perpendicular to strain direction.
- Use of expanded structures

Hex and Negative Poisson's ratio strain sensor designs

Samples at different infill densities

Samples with different infill patterns

Continuous Line Printing (Vase Mode)

Conventional Layer by Layer Printing

