

Prolonged Self-healing of Laminated Composites via *In Situ* Thermal Remending

Alexander D. Snyder¹, Z. Phillips², J. Turicek¹, Prof. Patrick^{1,2}

¹ Department of Mechanical and Aerospace Engineering

² Department of Civil, Construction, and Environmental Engineering North Carolina State University (NCSU)

Civil, Construction, & Environmental ENGINEERING Mechanical & Aerospace ENGINEERING

- Background/Motivation
- Constituent materials, System architecture, and Composite fabrication
- Mechanical Testing and Evaluation:
 (I) in-plane tension
 - (II) mode-I fracture
- In Situ Self-Healing Results
- Investigation of Underlying Healing Mechanisms
- Summary/Conclusions

Motivation

Fiber-reinforced polymer (FRP) composites ubiquitous in modern engineered structures:
 (1) high specific strength/stiffness, (2) corrosion resistance, (3) geometric/constituent versatility

Aerospace

Automotive

Naval

Energy

Civil

Woven FRP Composites

Hierarchical materials with structural advantage, but also inherent susceptibility to damage

Laminated Woven Composite

ASM International (2010)

Interlaminar Delamination

4

Self-healing Background

Delamination detection is difficult and manual repairs are costly – self-healing offers a bioinspired solution

Repairs costly/time consuming

www.dsto.defence.gov.au

Possible catastrophic failure

USAF Hilltop Times

Self-healing Strategies

Vascular

Dynamic rebonding

Soft Materials

Agnew. Chem. 51 (2012)

- Interface contact
- **Room-temperature repair**

Structural Materials

Science 295 (2002)

Elevated temperature repair

Nature 409 (2001)

0

Limitations:

Polymerized

- Catalve

- Single-heal 0
- Small-scale repair o 0

Capsule-based

Adv. Mater. 22 (2010)

Blockages

Mixing difficult

Advantages:

Nature 540 (2016)

- Multiple-heals
- No external agent

Thermal Remending

- Inclusion of thermoplastic phase + heat provides capacity for structural composite repair
- Poly(ethylene-co-methacrylic acid) EMAA is a commodity polymer with proven self-healing ability

Self-healing achieved ex situ and/or above glass-transition temperature (T_g)

Thermoplastic-modified Matrices

Interlayer Integration

Polymer 92 (2016)

Macromol. Mater. Eng. 295 (2010)

ACS Appl. Mater. Inter. 1 (2009)

Compos. Part A 43 (2012)

Compos. Part A 43 (2012)

New Approach: In Situ Thermal Remending

• Self-healing below laminate glass-transition temperature (T_g) via *in situ* heating

Preform Patterning and Laminate Fabrication

FDM to micro-pattern EMAA in serpentine geometry directly onto woven reinforcement = scalability

1 mm

500 µm

Investigate effect of composite modification(s) on in-plane tensile performance[†]

^o Dynamic mechanical analysis (DMA) to determine thermal remending below T_g and retain in-service structural performance

DMA Fixture & Specimen

3-pt Flexure (1Hz, 5°C/min)[†]

$$E^{*} = E' + iE'' \qquad \tan(\delta) = \frac{E''}{E'}$$

Fiber-Composite Constituents:

Matrix: DGEBA epoxy system *Reinforcement*: Glass (GFRP) and Carbon Fiber (CFRP); $V_f = 0.51^{\ddagger}$

ASTM E-1640

[‡]ASTM D-2584

Elastic (storage) Modulus Comparison

	E' 23°C, GPa	E' T _g , GPa	E' 130°C, GPa
Ероху	2.9	0.1 (3%)	1.3 (45%)
GFRP	16.7	8.7 (<mark>52%</mark>)	14.2 (85%)
CFRP	25.7	13.5 (<mark>53%</mark>)	22.5 (88%)

*Percentages (%) represent retained E' vs. value at RT = 23°C

Resistive Heater Calibration

Mechanical Evaluation: Mode I Fracture

2.1

36

Virgin fracture resistance & healing efficiency scale w/ EMAA areal coverage

Topological Investigation of Healing Performance

• Fiber-reinforcement type influences self-healing behavior

Capacity for Sustained Self-healing

• 100 heal cycles achieved in GFRP (and CFRP) w/o significant degradation in recovery

*scale bars = 25 µm

[1] Compos. Sci. Tech. **151** (2017)

Eventual collapse of microporous network by heal cycle 40

[2] Mater. Today Comm. 8 (2020)

Intensity (a.u.)

FTIR Spectroscopy Reveals Chemical Mechanisms

ATR-FTIR spectroscopy of EMAA supports propensity for perpetual healing

Key Chemical Reactions[†]

FTIR Spectral Evolution of EMAA

I. IIa. IIb

Ester (I, IIa, IIb)

Hydroxyl (I, III)

Processing

0.0

FTIR Spectroscopy of EMAA

Invariant: 719 cm⁻¹ Methylene rocking

Reactive: 1406 cm⁻¹ Carboxylic Acid Hydroxyl stretch, 1535 cm⁻¹ Carboxylic Acid Ammonium Salt stretch, 1710 cm⁻¹ Ester Carbonyl stretch, 3247 cm⁻¹ Hydroxyl stretch

Healing lla, llb

Carboxylic Acid (I, IIa, IIb, III)

Ammonium Salt (IIa, IIb)

- Achieved in situ self-healing via thermal remending in fiber-composites below the glass-transition temperature (T_g).
- 3D printed EMAA patterns have negligible impact on in-plane structural integrity and increase mode-I fracture resistance (G_{IC}). Textile resistive heaters have minor impact on GFRP properties.
- Increasing EMAA areal coverage increases virgin fracture resistance and healing efficiency (> 100%).
- Superior healing performance in GFRP vs. CFRP due to physical properties of fabric architecture and surface chemistry that promotes EMAA microporous network and crack tortuosity.
- Rapid sub-hour (45 min.) and extended in situ heal cycles (100+) demonstrates propensity for practical and perpetual in-service repair.

Snyder et. al, Prolonged In situ Self-healing in Structural Composites via Thermo-reversible Entanglement, Nat. Comm. 13 (2022).

U.S. Patent No. 16/944,675 (Issued March 2023)

Acknowledgements

Funding Source:

US Army Corps of Engineers Strategic Environmental Research and Defense Program (SERDP) Weapons Systems and Platforms (WP) Grant # W912HQ21C0044

US Air Force Office of Scientific Research Young Investigator Program (YIP) Grant # FA9550-18-1-0048

Sandeep

Prof. Patrick

Zach

Jack

US Army Corps of Engineers_®

Academic Collaborators:

C. Diesendruck K. Nakshatrala

