Fatigue Damage Characterization of Non-crimp Fabric Reinforced Reactive Thermoplastic Composites at Room and Low Temperatures

Erli Shi, John Montesano

Composites Research Group, Department of Mechanical & Mechatronics Engineering, University of Waterloo, Canada

Contents

1. Introduction

- 2. Project Overview
- 3. Materials and Experimental Details
- 4. Results
- 5. Conclusions

Introduction	Overview Ma Experi	mental Details Results Conclusion	
Characterization of FRP composites at low temperatures:			
Author	Test condition	Main findings	
Gong et al. [3]	Static tension UD Glass / epoxy RT and -196.15°C (77K)	The ultimate tensile strength, Young's modulus, and strain at failure increased at 77K.	
Torabizadeh et al. [4]	Static tension, compression, shear UD Glass / epoxy RT, -20°C, -60°C	The strength and modulus both increased with decreasing temperature in all cases, while the strain at failure decreased.	
Cormier et al. [5]	T-T fatigue tests with R=0.1 NCF Glass / epoxy RT and -40°C	The fatigue life improved significantly at lower temperature, with a steeper decrease of the S-N curves.	
Shindo et al. [6]	T-T fatigue tests with R=0.1 Woven Glass / epoxy RT, -196.15°C and -269.15°C (4K)	The fatigue life increased at 77K compared to RT, followed by significant loss when further decreasing the temperature to 4K.	
Bureau et al. [7]	T-T fatigue tests with R=0.1 Woven Glass / PP RT and -40°C	GF/PP composites had excellent fatigue performance at RT, which improved at -40°C.	

Research gaps:

- Few studies focus on characterizing the performance of fiber-reinforced composites at low temperatures
 - Most studies do not consider damage evolution and failure mechanisms
 - Fewer studies on fiber-reinforced thermoplastics

Opportunity – Fiber-reinforced reactive thermoplastics:

- May offer improved toughness and durability at low temperatures
- Compatible with current liquid resin infusion processes for wind turbine blades
- Recyclable

WATERLOO Composites WATERLOO

Material system: UD-NCF glass (Saertex ®) + Thermoplastic acrylic (Elium® 188 XO)

Fabric architecture:

Group

Reactive thermoplastic acrylic resin:

Resin properties:	
Low viscosity: 0.1 Pa·s	
Polymerization time at RT: 2 hours	
Post-cure dry-Tg: 123°C	
Recyclable, low density, high strength and toughness	

Group

Quasi-static test results

5 quasi-static tests were conducted at each temperature condition.

- A near linear stress-strain behavior **at RT**;
- An obvious bilinear stress-strain response **at -50°C** with a transition stress in the range of 12% -15% UTS (~ 0.26% strain).

Damage evolution of [0/90]_s laminates at RT (Static)

Onset of 90° tow cracks

Examples of 90° ply fiber tow

Development of 90 ° tow cracks

UNIVERSITY OF

WATERLOO

Composites Research Group

RT: (a) Undamaged stage, (b) 20% - 25% UTS, (c) 50% - 55% UTS, (d) 70% - 75% UTS.

Cracks coalescence between the 90 $^\circ$ fiber layers

0 ° tow cracks

Microscopic observation of RT samples: (a) axial direction at 20%UTS, (b) axial direction at 70%-75%UTS, (c) cross-section direction at 70%-75%UTS.

UNIVERSITY OF CRG Composites WATERLOO Group

-50°C : (a) Undamaged stage, (b) 1st cycle, (c) 55% *N_f*, d) 91% *N_f* (*N_f* =1375)

WATERLOO Composites Research Group

(c) $12\% N_f$, d) $97\% N_f$ (N_f =875)

- 1. The stress-strain response of UD-NCF glass fiber/acrylic composites at RT and -50°C is different (near linear vs obvious bilinear). However, similar damage modes were observed, i.e., 90° tow cracks, 0° tow cracks, matrix cracks, and interface cracks.
- 2. The ultimate tensile strength and Young's modulus increased at -50°C due to the increased resin strength and fiber-resin interface strength at low temperature.
- 3. At low temperature, damage tended to initiate at an early stage and was more advanced; however, there were fewer interactions between damage mechanisms causing stress relief and increased strain at failure.
- 4. For fatigue tests, the dog bone samples prevented premature failure, while the new strain measurement scheme enabled correlation of the damage evolution with stiffness degradation.
- 5. The damage development and failure mechanism of static tests and fatigue tests are different. The latter showed complicated damage modes at early stage (i.e., after 1 cycle). The damage evolution process at RT and 50°C is also different, and further validation is needed using microscope observation.

Future works:

- 1. Microscopic observations of failed specimens and interrupted specimens at different loading cycles to evaluate the failure mechanism and verify the observed damage modes at RT and -50 °C;
- 2. Perform fatigue tests at different stress levels (40% UTS to 80% UTS) to extract S-N data;
- 3. Correlate the observed damage modes with stiffness degradation and evaluate the crack density evolution during cyclic loading.

Acknowledgements

Thank you to all sponsors for this project!

References

[1] The Wind Atlas, Environment and Climate Change Canada's Wind Atlas website, Environment and Climate Change Canada (RPN), accessed
 2000, < http://www.windatlas.ca/index-en.php >.

[2] Abdul Ghani Olabi, Tabbi Wilberforce, Khaled Elsaid, Enas Taha Sayed, Tareq Salameh, Mohammad Ali Abdelkareem and Ahmad Baroutaji. "A Review on Failure Modes of Wind Turbine Component". Energies , 14(17), 5241, 2021.

[3] Gong M, Wang XF, Zhao JH. "Experimental study on mechanical behavior of laminates at low temperature". Cryogenics 2007; 47:1–7.

[4] Torabizadeh MA. "Tensile, compressive and shear properties of unidirectional glass/epoxy composites subjected to mechanical loading and low temperature services". Indian J Eng Mater Sci 2013;20:299–309.

[5] Laurent Cormier, Simon Joncas and Rogier P.L. Nijssen. "Effects of low temperature on the mechanical properties of glass fibre–epoxy composites: static tension, compression, R= 0.1 and R=-1 fatigue of ±45° laminates". Wind Energy, Volume 19, pp 1023–1041, 2016.
[6] Yasuhide Shindo, Satoru Takano, Katsumi Horiguchi, Takashi Sato. "Cryogenic fatigue behavior of plain weave glass/epoxy composite laminates under tension–tension cycling". Cryogenics, Volume 46, pp 794-798, 2006.

[7] M. N. BUREAU* and J. DENAULT. "Fatigue Resistance of Continuous Glass Fiber/Polypropylene Composites: Temperature Dependence".POLYMER COMPOSITES, Vol. 25, No. 6, DECEMBER 2004.

[8] Shi EL, Montesano J. "Fatigue Behavior of A Unidirectional Non-crimp Fabric Glass Fiber Reinforced Reactive Thermoplastic Composite," presented at the 12th Canadian-International Conference on Composites. 2022.

Thank You!

