Composite Aircraft Certification

TASI'S MODULUS - DD CASE STUDY

Naresh Sharma, PhD, CEO and Founder NASHERO, Italy Albertino Artiero, PhD, Ass. Prof. U. Porto, Portugal

DD Case Study

Aircraft certification

Next steps and Conclusions

Double-Double

BI-ANGLE LAMINATIONS

Double Double Bi-angled plies $[\pm \Phi, \pm \Psi]n; [+\Phi, +\Psi, -\Phi, -\Psi]n; [+\Phi, +\Psi, -\Psi, -\Phi]n$

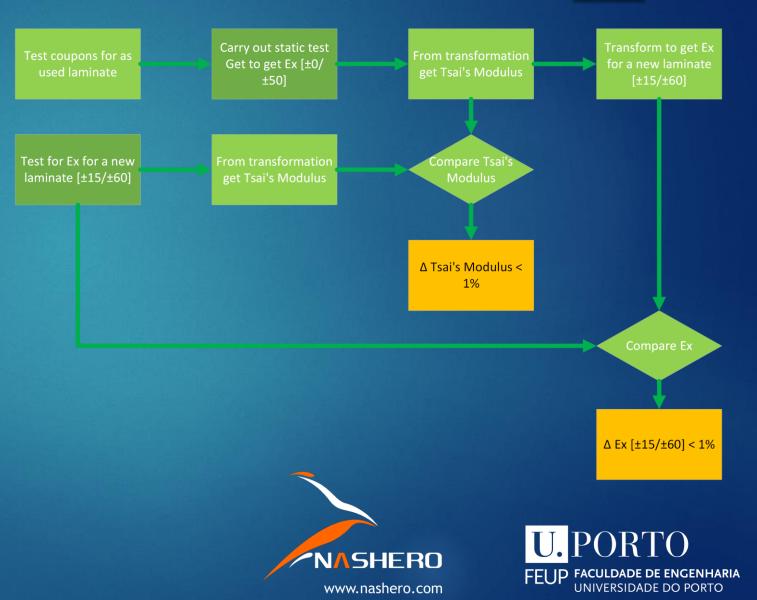
With n=2 minimal coupling With $n \ge 4$ unperceived coupling

Balanced ► Symmetric Homogenized Ply-drops Optimization tools

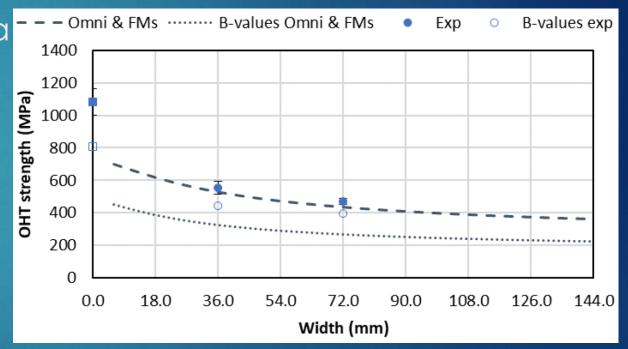
Tsai's Modulus

 ${N \\ M} = \begin{bmatrix} [A] & [B] \\ [B] & [D] \end{bmatrix} {\epsilon^0 \\ K}$ $\begin{cases} \epsilon^{0} \\ K \end{cases} = \begin{bmatrix} \lfloor \alpha \rfloor & \lfloor \beta \rfloor \\ \lceil \tilde{\beta} \rceil & \lceil \delta \end{bmatrix} \begin{cases} N \\ M \end{cases}$

- ▶ A=D, B=[0]
- Tsai's modulus = $Trace[Q] = Q_{11} + Q_{22} + 2Q_{66}$
- Tsai's Modulus = total material stiffness.



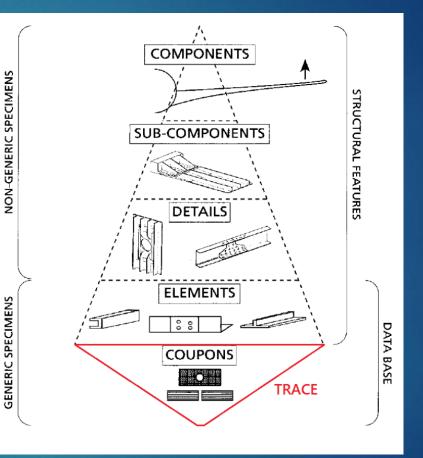
Tsai's Modulus & Transformations


Laminate	[0]	[0/90]	[π/4]	Soft1	Hard1	Soft2	Hard2	Tr
								(GPa)
% [0]	100	50	25	10	50	9	55	
% [±45]	0	0	50	80	40	73	36	
% [90]	0	50	25	10	10	18	9	
IM6/epoxy	0.874	0.463	0.337	0.226	0.518	0.226	0.55	232
IM7/977-3	0.877	0.464	0.337	0.225	0.519	0.225	0.551	218
T300/5208	0.877	0.465	0.337	0.224	0.518	0.225	0.551	206
IM7/MTM45	0.897	0.471	0.337	0.213	0.523	0.217	0.557	195
T800/Cytec	0.888	0.472	0.335	0.211	0.518	0.216	0.552	183
IM7/8552	0.884	0.469	0.336	0.217	0.519	0.22	0.552	180
T800S/3900	0.898	0.476	0.335	0.206	0.521	0.212	0.555	168
T300/F934	0.883	0.472	0.335	0.211	0.517	0.216	0.55	168
T700 C-Ply 64	0.866	0.464	0.337	0.225	0.514	0.226	0.546	163
AS4/H3501	0.852	0.456	0.338	0.237	0.512	0.234	0.543	162
T650/epoxy	0.866	0.465	0.337	0.222	0.514	0.224	0.546	160
T4708/MR60H	0.897	0.475	0.335	0.206	0.521	0.212	0.555	158
T700/2510	0.877	0.47	0.336	0.215	0.515	0.219	0.548	144
AS4/MTM45	0.889	0.474	0.335	0.206	0.518	0.214	0.552	143
T700 C-Ply 55	0.869	0.466	0.337	0.222	0.515	0.224	0.547	139
Mean	0.880	0.468	0.336	0.218	0.517	0.221	0.550	
Coeff. Var. %	1.50	1.17	0.31	4.17	0.58	2.84	0.70	

2 💦 ×	Q11	m ⁴	n ⁴	2m ² n ²	4m ² n ²	Qxx
× ⁹ ↑ +0	Q ₂₂	n ⁴	m ⁴	2m ² n ²	4m ² n ²	Qxx Qyy Qxy Qxy Qxs
		m²n²	m ² n ²	m ⁴ +n ⁴	-4m ² n ²	Qxy Add
	Q ₆₆	m ² n ²	m ² n ²	-2m ² n ²	(m ² -n ²) ²	Qss
	Q ₁₆	m ³ n	-mn ³	mn ³ -m ³ n 2	2(mn ³ -m ³ n)	
	Q ₂₆	mn ³	-m ³ n	m ³ n-mn ³ 2	2(m ³ n-mn ³)	$m = \cos \theta$, $n = \sin \theta$

Data Extrapolation using Finite Fracture Mechanics Models

Extrapolation of notched data to a DD [±0/±50] laminate using data identified from a DD [±15/±60] laminate and comparison with experimentally determined plain and open-hole tension test results (Exp) and corresponding B-Basis values (B-values)



Tsai's Modulus is a Material Property

 $Tr = E_1/0.880$

		E _x %Tr	E _y ŶTr	<i>G_{xy}</i> ∕∕Tr	v _{xy} o
Laminate factors	Universal [0]	0.880	0.052	0.031	0.320
	[0/90]	0.468	0.468	0.031	0.036
	[π/4]	0.336	0.336	0.129	0.308
	[0 ₇ /±45/90]	0.662	0.175	0.070	0.310
	[0 ₅ /±45 ₂ /90]	0.518	0.208	0.109	0.423
	[0 ₂ /±45/90]	0.445	0.289	0.109	0.308
	[0/±45 ₄ /90]	0.217	0.217	0.187	0.552
	[0/±45]	0.370	0.155	0.161	0.734
	[0/±45/0]	0.499	0.141	0.129	0.701
	[0/±30]	0.510	0.074	0.129	1.220
	[0/±30/0]	0.611	0.072	0.104	1.079
	[±12.5]	0.764	0.053	0.066	0.913

Aircraft Certification

Classical

- Production/Temp/Environmental/S tatic/Dynamic
- DOT/FAA/AR-03/19 Material Qualification
- DOT/FAA/AR-10/6
- FAA/AC-21/26A, FAA/AC23-20
- EASA AMC 20-29
- Composite Materials Handbook 17 AC20-107b, AR-96-111, AR-99/49, FAA/CT-86/39

Proposed

- Test matrix according to AR-03/19, production based on AC23-20
- Specimen testing of each material (fiber+epoxy), Basis A or Basis B data generation reduction of subsequent tests based on Tasi's modulus of specimens.
- Extrapolation of all other properties based on Tsai's Modulus and FFM models

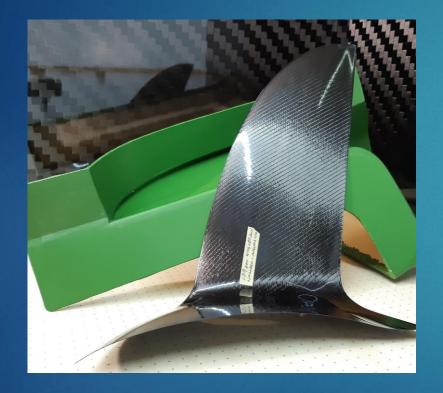
Conclusions from testing

Greener approach
Fewer test specimens
One to two orders of magnitude less in cost.
Quicker and less

wastage

Confidence in data, better than 95%

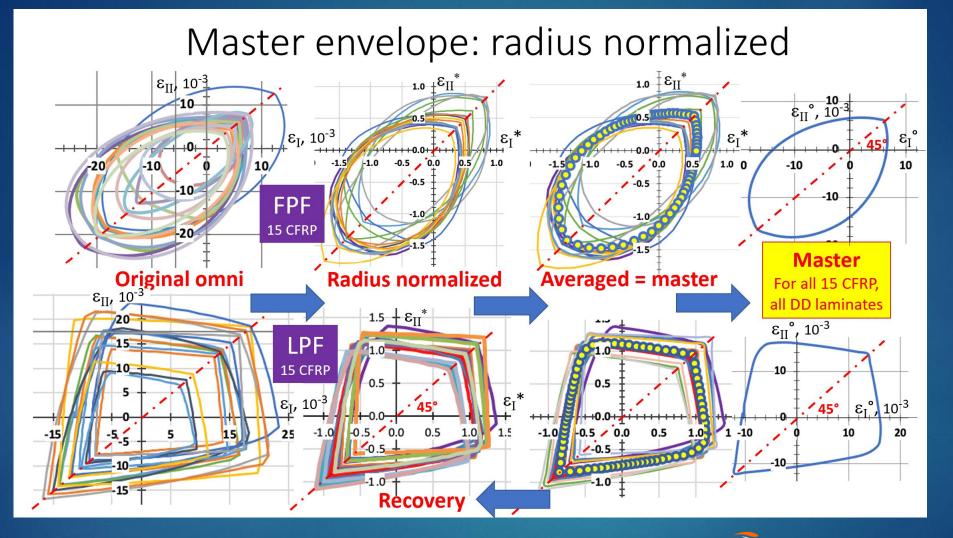
One material system's data can be used to fine tune structural performance.


Take home message: Tsai's Modulus and Double-Double

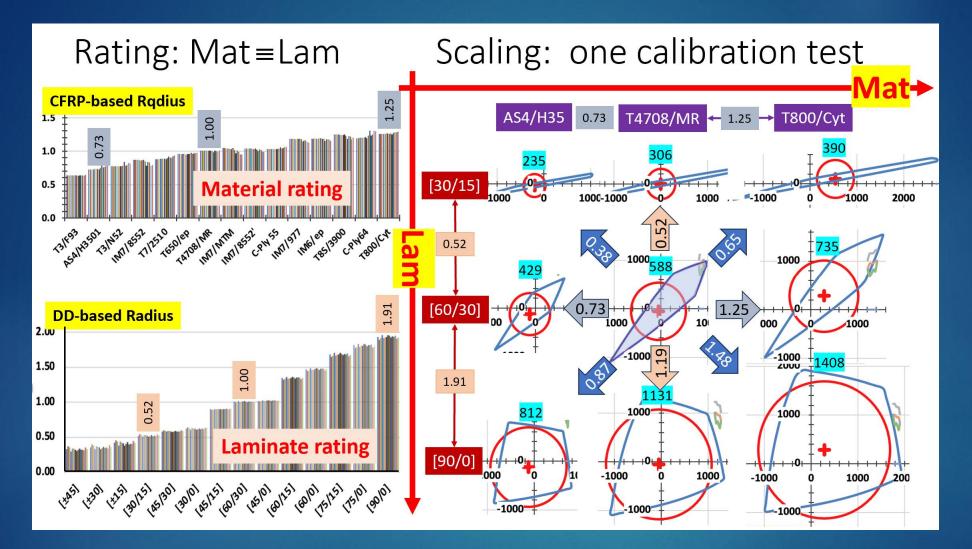
The only technology that can reduce structural mass by 45% w.r.t. current LQL laminates, start thinking about how you'll use that 45% reduced mass... Many practical implications we have not touched on.

Some first aircraft parts in DD using ZeroVoid™ technology of NASHERO

Questions?


naresh@nashero.com

aartiero@fp.up.pt



From the ICCM23 Book on DD, by Prof. Stephen W. Tsai

From the ICCM23 Book on DD, by Prof. Stephen W. Tsai

