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Introduction

 Additive manufacturing (AM) has enabled the
fabrication of lightweight structures with complex
geometries, including lattice structures.

* Well-designed lattice structures can achieve excellent
weight-specific mechanical and functional properties.
These are tunable through the design of the unit cell and
adjustment of geometrical parameters.

* Applications: heat sinks, heat exchangers, orthopedic
implants, sports equipment, rocket engines, etc.

* There is a growing need for real-time monitoring of the
damage state of lattice structures, particularly for safety-

critical applications. l

Self-sensing lattice structure
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[1] https://all3dp.com/1/3d-printing-lattice-structures-the-ultimate-guide/



~
MEL
K=

.

’ ICCM 23' i 3
i nELFAsEj
N, A

g

BCC Plate

I ntrO d u Cti O n Gyroid Kelvin

Self-sensing is the ability of a material to monitor its own
condition without the need of additional sensors (the
material itself acts as a sensor).

CAD Models

Self-sensing lattices can be realized by fabricating the
structure from a piezoresistive material.

AM Structures
enabled by FFF

@ R

Polymer-based nanocomposites are attractive materials for
self-sensing lattice structures due to their pronounced
piezoresistivity and ability to be 3D printed.

CF/PEEK Piezoresistive Sensitivity
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b 7% < ¢ < 50%
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This study examines the mechanical and self-sensing
performance of 2D and 3D lattice structures processed via
DLP using an electrically conductive nanocomposite resin.
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The ultimate goal is to unveil fundamental relations
between lattice topology, relative density and sensing
performance in bend- and stretch-dominated lattices.
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Hexagonal Chiral Re-entrant [3]

[2] Ubaid, Jabir, et al. "Multifunctionality of nanoengineered self-sensing lattices enabled by additive manufacturing." Advanced Engineering
Materials 24.7 (2022): 2200194.
[3] Andrew, J. Jefferson, et al. "Energy absorption and self-sensing performance of 3D printed CF/PEEK cellular composites." Materials & Design 208 (2021): 109863.
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Feedstock
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CAD modelling
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DLP 3D printing

Bulk samples

2D lattice structures

Mechanical and

piezoresistive
performance
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Feedstock preparation and 3D printing

CNT Sample
concentration Designation
(phr)
: : o , 0 PC-0
Adding CNTs & TPO Adding PlasClear Magnetic stirring for 30 min
0.01 PC-0.01
l T l 0.025 PC-0.025
@ @ 0.05 PC-0.05

0.1 PC-0.1

Sl

— 0.2 PC-0.2

== O3 | ' After 3D printing:
Adding TPGDA Probe-sonication & magnetic 3D printing « Samples were rinsed in isopropyl alcohol.
stirring for 10 minutes * No post-treatments were applied.

[4] Saadi, O. W., Schiffer, A., & Kumar, S. (2023). Piezoresistive behavior of DLP 3D printed CNT/polymer nanocomposites under
monotonic and cyclic loading. The International Journal of Advanced Manufacturing Technology, 126(5-6), 1965-1978.
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Resin properties

Dynamic viscosities of the Electrical conductivities of the
prepared resins 3D printed nanocomposites
(a) T T T (b) T T T T T T T
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[4] Saadi, O. W., Schiffer, A., & Kumar, S. (2023). Piezoresistive behavior of DLP 3D printed CNT/polymer nanocomposites under monotonic and cyclic loading. The International Journal of Advanced
Manufacturing Technology, 126(5-6), 1965-1978.
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Bulk samples: Tensile response
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Piezoresistive response
AR/R
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2D lattice structures . siyes ) Blayers
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[6] Saadi, O. W., Uddin, M. A., Schiffer, A., & Kumar, S. (2023). Digital light processing of 2D lattice composites for tunable self-sensing and mechanical performance. Advanced Engineering
Materials, in press.



2D lattice structures: Tensile response

a) Experiments

S, Mises

(Avg: 759%)
+2.228e+01
+2.042e+01
+1.857e+01
+1.671e+01
+1.486e+01
+1.301e+01
+1.115e+01
+9.297e+00
+7.443e+00
+5.588e+00
+3.734e+00
+1.879e+00
+2.474e-02

Experimental
— Hex-20
e HEX-30

Hex-40

Stress (MPa)

Hexagonal

0 2 4 6 8 10  £=0% £-=5% £-=63%  &-0%

S, Mises

(Avg: 75%)
+1.938e+01
+1.776e+01
+1.615e+01
+1.453e+01
+1.292e+01
+1.130e+01
+9,688e+00
+8.073e+00
+6.459e+00
+4.844e+00
+3.229e+00
+1.615e+00
+0.000e+00

Re-entrant

0 1 2 3 4 5
Strain (%) [5] Saadi, et al., Adv Eng Mater (2023), in press.
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2D lattice structures: Gibson-Ashby power law fitting\

Gibson-Ashby scaling relations:

(a)

Modulus: F=f« pm
Eq i 0.1
[sa)
. .o =_9% _ -n
Tensile strength: ¢ = —X p 0.01L

O'ys
Bend-dominated behavior:m = 2andn = 3

Stretch-dominated behavior:m =n = 1.0

(b)

{n,m}
Chiral {3.2,2.2} 0.1F
Hexagonal {2.6,1.6} | b
Triangular {1.4,1.4}
0.01
Re-entrant {1.9,1.5}

[5] Saadi, et al., Adv Eng Mater (2023), in press.
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2D lattice structures: Piezoresistive response
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[5] Saadi, et al., Adv Eng Mater (2023), in press.
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3D lattice structures

(a) Octet
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Three relative densities SNDE DR DR NDE, SRR
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- 30%

Three geometric gradations

k=16
- k=3.0
- k=5.6

K=x1/%,

where x; and x, are the heights of the
longest and shortest layers, respectively.
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3D lattice structures: Compressive response (Octet)

Nanocomposite
Neat Polymer 0.0
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3D lattice structures: Compressive response (Kelvin)
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3D lattice structures: Performance comparison

Enhancement ratios:

o
Strength: R, = g/o'ng

E
Modulus: R = g/E
ng

Energy absorption:
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Grading parameter (x)
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3D lattice structures: Cyclic compressive loading (Octet)
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Conclusions

* The backbone of this work was the development of a UV curable nanocomposite resin with dispersed
MW(CNTSs suitable for DLP 3D printing.

« Electrical percolation in the 3D printed samples was achieved at an ultra-low nanofiller loading of
0.01 phr.

2D lattice structures:

« The piezoresistive response of the primarily stretch dominated structures (re-entrant and triangular)
was insensitive to the relative densities.

« The gauge factors of the bend dominated structures (hexagonal and chiral) increased with increasing
relative density.

3D lattice structures:

« The integration of a gradient in the unit cell length had a strong effect on the compressive response
of the Octet lattice, and a relatively weak effect on the Kelvin lattice.

« Under compressive loading, the piezoresistive response of was controlled by two competing factors:
(i) the loss of percolation across fractured struts, causing the electrical resistance to increase, and
(ii) the percolation of contacts across densified cell layers, causing the resistance to decrease.
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