

Interfacial Performance of Composites by Fiber Bundle Tests: Impact of Nanofiller Dimension and Surface Chemistry

Hatice S. Sas, Melek Ozbilen, Volkan Eskizeybek e-mail: haticesas@sabanciuniv.edu

Introduction

Weak interfacial bonding can lead to:

- Reduced mechanical properties
- Delamination and crack propagation
- Restricted applications
- Impaired durability

- Introducing nanofillers into the polymer matrix can result in exceptional mechanical performance enhancements in the fibermatrix interface.
- Nanoparticle type and morphology affect the polymer matrix's fracture toughness.

ICCM 23 INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS BELFAST 2023 30 JULY - 4 AUGUST

hatice.sas@sabanciuniv.edu

Fiber bundle test (FBT) \rightarrow Interfacial bonding with nanofillers

Advantages:

- Representative assessment
- Simplicity and efficiency
- Facilitates parameter study
- Micro-scale prediction
- Compatibility with real composites
- Early-stage evaluation
- Complementary to other tests

MOTIVATION

- Explore using nanofillers with different morphologies, HNT (1D) and GO (2D), and chemically modified surfaces to strengthen the fiber/matrix interphase.
- By incorporating these nanofillers into the polymer matrix, investigate their impact on interfacial bonding and evaluate how they contribute to enhanced mechanical properties using FBT.

Sample preparation

SU

APTES modification of HNTs and GNPs

Transverse fiber bundle tensile strength

- Epoxy modified with graphene oxide nanoparticles \rightarrow crack pinning and crack branching mechanisms
- Hybrid epoxy matrix with halloysite nanotubes → toughness enhancing mechanisms: crack bridging and nanotube pinning
- Surface functionalized GO and HNT added to the epoxy matrix → interfacial strength reached the highest value.

ICCM 23 INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS BELFAST 2023

Fracture Surface

- With GO/EP (B) and HNT/EP (C) fiber-matrix interfacial interactions increased and interfacial strength improved.
- Increased surface roughness in HNT reveals the effectiveness of toughening mechanisms, which are more common in the impact of 1D nanoparticles on the fracture performance, especially bridging and nanotube pinning

hatice.sas@sabanciuniv.edu

Conclusion

The impact of nanoparticle reinforcement on fiber-matrix interfacial mechanical performance in fiber-reinforced polymer composites are investigated using meso-scale fiber bundle tests for evaluating interfacial properties. Fiber bundle tests provided practical and accurate mechanical insights into the fiber-matrix interface.

This study serves to following tracks for composites:

- Enhanced mechanical properties
- Tailored toughening mechanisms
- Advancements in material design

Thank you!

Hatice S. Sas e-mail: <u>haticesas@sabanciuniv.edu</u>

