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INTRODUCTION / MOTIVATION

● UD composite microstructure RVE 
simulations are computationally 
expensive and generate large 
amount of degrees of freedom

● Microstructures create a natural 
polygonal mesh through the use of 
Voronoi cells

● Artificial Neural Networks training, 
optimization problems, and statistical 
analysis that need several 
realizations can benefit from smaller 
models



INTRODUCTION / MOTIVATION

● This work proposes a Polygonal 
Finite Element that accounts for the 
difference in properties between 
fiber and matrix and the 
corresponding stress concentration 
using Generalized Finite Elements 
techniques

● The main advantage over classic 
finite element solutions is a large 
decrease in the degrees of freedom 
of the model through the use of this 
enhanced-element



● Wachspress functions

BASE SHAPE FUNCTIONS



● Simple binomial polynomials of order 
q=1..n centered on the element 
centroid

● Simulates/beaves as an 
h-enhancement of the element

● Needed for the strain compatibility 
between elements and n-gons with 
fewer sides (3, 4 and 5)

ENRICHMENT FUNCTIONS - GLOBAL



● Base radius gaussian functions 
centered on the points closest to 
the neighboring element for every 
n-side

● 𝜎p varies as percentages of ẟ 
starting from 10% up to 100% 
increasing logarithmically

ENRICHMENT FUNCTIONS - STRESS



● Jacobian can easily be calculated 
as long as ψg and ψs are have 
closed forms and are C1

● Isoparametric mapping of 
coordinates and Ωf is done through 
φ and an inversion through 
Newton-Raphson

EXTRINSIC SHAPE FUNCTIONS



ELEMENT COMPATIBILITY

● The compatibility between 
neighboring elements is imposed 
through a penalization condition 
using Lagrange multipliers on every 
common side Γ

● The penalization is continuous using 
unidimensional cubic Hermite 
polynomials for the discretization of 
the penalizing forces



GOVERNING EQUATIONS AND ELEMENTAL EQUILIBRIUM

● The variational of energy contribution from a single Voronoi cell is:

● Three main integration domains exist: the whole n-gon element domain Ω, the 
fiber domain Ωf and the boundaries Γi i=1..n



GOVERNING EQUATIONS AND ELEMENTAL EQUILIBRIUM

● In matrix form the elemental stiffnesses and coupling matrices are

● Three main integration domains exist: the whole n-gon element domain Ω, the 
fiber domain Ωf and the boundaries Γi i=1..n



INTEGRATION STRATEGY

● Each element is divided into the two 
domain region Ω and Ωf;

● The whole domain Ω is divided into 
triangles formed by two vertices and 
the fiber center
○ Each triangle is integrated using 

an adaptive Xiao-Gimbutas 
quadrature

● The fiber domain Ωf is integrated 
using an adaptive King-Song 
quadrature

● Each side Γi is integrated using a 
classic Gauss-Legendre quadrature



RVE GENERATION

● RVEs are generated from Weibull 
distributed fiber centers based 
microstructure images

● Fiber centers are identified through 
Python code and fit to a uniformly 
distributed hexagonal grid

● The distances are optimized using a 
re-annealing algorithm and the 
shape and scale parameters are 
obtained using a maximum likelihood 
estimation

Realization

Opt.

Fiber

Ident.



RVE GENERATION - EXAMPLES



STUDY CASES

● Six study cases were created to 
study the efficiency and accuracy of 
the element comparing to a classic 
approach
○ Normal and shear loads applied 

to the RVE
○ Three levels of fiber density

■ νf ≅ 40%, 60%, 68%



RESULTS

Volume fraction 
of fiber [%] Solver

Number of 
degrees of 
freedom for 

convergence

Time [s]

40.75 Present Work 4423 7.636

ABAQUS 5930564 1273.2

61.9 Present Work 4940 8.536

ABAQUS 6349848 1402.3

68.87 Present Work 4780 7.838

ABAQUS 6018381 1313.5



RESULTS

Volume 
fraction of 
fiber [%]

Load case Solver
Maximum 

normalized 
displacement

% Difference
Average 
principal 

stress

Maximum 
principal 

stress
% Difference

40.75 Traction Present Work 0.1034
0.0000

14.026 519.34
13.0000Abaqus 0.1034 14.026 451.8258

Shear Present Work 0.145
0.0000

19.669 728.2814
13.0000Abaqus 0.145 19.2756 633.6048

61.9 Traction Present Work 0.0887
0.1127

12.032 445.5073
13.2023Abaqus 0.0888 11.8962 386.6903

Shear Present Work 0.1043
0.0000

14.1481 523.8604
16.4000Abaqus 0.1043 13.8181 437.9473

68.87 Traction Present Work 0.0768
0.0000

10.4178 385.738
7.7000Abaqus 0.0768 10.2995 356.0362

Shear Present Work 0.0993
0.1007

13.4698 498.7472
7.7929Abaqus 0.0992 13.424 459.8801



● The results obtained with the present methodology has showed perfectly 
accurate results for displacements and accurate enough results for 
stresses/strains in magnitude, but good at simulating position of maximum 
stresses when comparing to a commercial classic FEM solution, keeping an 
average precision of 90% for maximum values

● The number of degrees of freedom in the models were reduced by several 
orders of magnitude, increasing the applicability in ANN and optimization 
problems

● Future works on the influence of optic fiber sensors on damage and the 
optic-mechanical coupling through the vibration modes are possible

CONCLUSIONS AND FUTURE WORKS
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