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Importance

• Increasing importance of light weight structures

• Fiber Reinforced Polymers (FRPs) offer excellent strength to weight ratios

Introduction

Microbuckling failure schematic

A design limiting failure mode

• Strength under predominant compression limited 
by Microbuckling (MB)

• Shear localization leading to final fracture 

• Highly sensitive to manufacturing induced initial 
fiber misalignments

• Fiber misalignments lead to scatter in strength in 
predominant compression loads

Fiber reinforced polymers (dark colors) 
in Boeing 787 Dreamliner
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Approaches

Mechanics of failure and post failure response

• Micro modeling

• Homogenized modeling (Micropolar continuum, Conventional continuum)

Quantification of uncertainty in strength

• Experimental determination of failure probability

• Numerical modeling for failure probability
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Mechanics of failure and post failure response
Micro modeling

• Ref [1]: Epoxy modeled as elasto-plastic material with quadratic yield surface f and damage initiation d dependent on hydrostatic pressure p

• Orthotropic material model with Hashin failure criteria for fibers.

• Material imperfection in form of idealized sinusoidal misalignment

• Kink band angle, effect of local and global misalignment, and different aspects of kink band formation analyzed

Micro model of UD layer

Different stages in formation of a kink band
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Mechanics of failure and post failure response
Hybrid micro meso modeling

• Ref [2]: 0-deg plies modeled as micro, off-axis plies modeled as meso

• Transversely isotropic elastic-plastic material model with following yield surface

• Interactions between fiber kinking, matrix cracking and delamination analyzed

Hybrid micro meso model of a 
multidirectional laminate

Different mechanisms in 90-0-90-0-90 ply model

b:kink band, c: matrix cracking, d: delamination
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Mechanics of failure and post failure response
Homogenized modeling (Micropolar continuum)

• Ref[3]: Additional rotational degrees of freedom to account for curvature strain

• Implemented in 2D adapting finite strain plasticity

• Major benefit in post peak response

Schematic of the different 
kinematic and kinetic quantities

Reference micromechanical model:

(a) Undeformed mesh, (b) mesh at max deformation, (c) F-d diagram

Conventional homogenized model:

At max deformation (a) mesh 10x10, (b) mesh 20x20, (c) F-d diagram

Micropolar homogenized model:

At max deformation (a) mesh 10x10, (b) mesh 20x20, (c) F-d diagram
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Mechanics of failure and post failure response
Homogenized modeling (Conventional continuum)

• Ref[4]: Anisotropic pressure dependent yield function with non-associated plastic potential function

• Cast into corotational framework to account for geometrical non linearities of large rotations

• Implemented in a Abaqus/Implicit UMAT

Stress strain response of a 3D homogenized model containing idealized 
sinusoidal misalignment with and without geometric nonlinearity consideration

Kink band shown by equivalent plastic strain localization
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• Ref[5]: Abaqus limitation in homogenized approaches with rotation of 
preferred direction vector (Wisnom 1993)

• Solution: Rotate the current orientation of preferred direction vector by shear 
strains

• Verification against Budiansky’s analytical formula

Mechanics of failure and post failure response
Homogenized modeling (Conventional continuum)

1 element model results

Budiansky’s analytical solutionRotated orientation of preferred direction Schematic  of 1 element model for verification 
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Mechanics of failure and post failure response
Homogenized modeling (Conventional continuum)

Stress-strain response

• [Ref. 6]: Effect of the Misalignment Dimensionality

• 1D and 2D sine waves for 2D modeling, and 2D and 3D 
sine waves for 3D modeling of the in-plane 
misalignment angle  .
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Quantification of uncertainty in strength
Experimental determination of failure probability: New fixture design

Fixture Design

Loading positions

Schematic of load transfer methods

• [Ref. 7]: Load transfer into the specimen through combined shear and end loading similar to the 
current standard ASTM-D6641

• Testing under axial compression and combined compression-shear

• Dimensions of specimen gauge section: 5x5x1.15 mm with tabs having tab angle of
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Quantification of uncertainty in strength
Experimental determination of failure probability: Failure mode

• [Ref. 7]: Nominal fiber direction parallel to specimen edges for all load cases

• Microbuckling failure mode observed in all load cases

Axial compression Combined compression-
shear case A

Combined compression-
shear case B

Fixture Setup

Surface scan of a sample from case B Zoomed in region
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Quantification of uncertainty in strength
Experimental determination of failure probability: Failure Envelope in Strain Space

• [Ref. 7]: 25 successful tests for each load case, survival probability of applied stress given

Failure envelope in strain spaceEmpirical probability of survival of the applied stress

• Strains measured directly on specimen surfaces using Digital Image Correlation

• Strain envelopes at 25th percentile, median, and 75th percentiles 
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Quantification of uncertainty in strength
Experimental determination of failure probability: Failure Envelope in Stress Space

• [Ref. 7]: Applied stresses measured through load cell cannot be divided into components

• Median value of stresses for combined load cases A and B derived using equation system 
below

• Approx. envelopes at 25th percentile and 75th percentiles

Failure envelope in stress space
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• [Ref. 5]: Generated distributions using the calculated spectral densities

• 3 model series generated based on sample 1 (s1), sample 2 (s2), and their average (avg) spectral density characterization

• Characteristics preserved: such as standard deviation and correlation lengths of misalignment angles

• Dimensions: 6.657x1.1412x0.951 mm

Quantification of uncertainty in strength
Numerical modeling for failure probability: Misalignment Topology Generation

Measured in-plane 
misalignment topology

Generated in-plane 
misalignment topology
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• [Ref. 5]: Homogenized representation of fiber and 
matrix at micro level with 20 node C3D20 elements

• Misalignments given as local material orientations at 
element integration points

Quantification of uncertainty in strength
Numerical modeling for failure probability: Model Geometry

Model schematic

Preferred direction 
shown in an element

• PBC in direction 1 and 2, free surfaces 
in direction 3

• Displacement loads
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• [Ref. 5]: Comparison using Weibull scaling law

• Close match between median values from experiments and avg model 
based on scaling law

• Model prediction scatter quite less leading to high m value

• Model size: 6.657x1.1412x0.951 mm

• Specimen size: 5x5x1.15 mm

Quantification of uncertainty in strength
Numerical modeling for failure probability: Experimental vs Numerical Approaches

m parameter 
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• [Ref. 5]: Numerical failure envelopes valid for a volume of 6.657x1.1412x0.951 mm whereas experimental envelopes valid for 5x5x1.15 mm

• Scale effects on compression part of envelopes visible clearly

• More load cases in numerical models lead to prediction of intricate shapes precisely

Quantification of uncertainty in strength
Numerical modeling for failure probability: Experimental vs Numerical Approaches

Comparison of failure envelopes in stress spaceComparison of failure envelopes in strain space
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• [Ref. 8]: Misalignment derived from measurements

• Predictions resulting from the weakest-link Weibull theory are compared against strength–size statistics gathered by numerical analysis 

• Generally, weakest-link Weibull theory applicable to size effects, however, bonded plies inconsistent with the weakest-link assumption

Quantification of uncertainty in strength
Numerical modeling for failure probability: Size effects in NCF composites

Percentiles of observed strength R over effective volume V

A view of the undeformed mesh of a five ply model 
(a) global view, (b) magnified view
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Outlook

• Investigations of scale effects under homogenous compression 
load through numerical and experimental approaches

• Methodologies for failure initiation and final failure scale laws in 
components such as holed specimens

• Use of probabilistic failure envelopes in combination with 
composite laminate theory for defining a safe region

• Use of machine learning algorithms for probabilistic analyses 
under compression dominated loads …

Topics of interest
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