Development and Implementation of a Strain Rate-Dependent Constitutive Model for Fibre-reinforced Composites

K. Rouf, M.J. Worswick, J. Montesano

Mechanical and Mechatronics Engineering,

University of Waterloo, Canada

Motivation

- Fiber-reinforced plastic (FRP) composites are strong candidates for energy absorbing applications in vehicles.
- Vehicle crashworthiness is typically assessed through full-scale virtual structural analysis followed by crash testing.
- Computer-aided engineering (CAE) impact simulation models are developed to simulate a crash event and predict the energy absorption capabilities of a vehicle structure.
- In order to accurately predict the impact performance of composite structures, CAE simulation models must consider the material strain ratedependent behaviour and possible process-induced defects.

Body-in-white of BMW-7 Series highlighting parts made from FRPs. [1]

[1] G. Gardiner, "Is the BMW 7 Series the future of auto composites?," 7 10 2016. [Online]. Available https://www.compositesworld.com/articles/is-the-bmw-7-series-the-future-of-autocomposites. [Accessed 25 11 2020].

Motivation

- Limitations with existing material models
 - Require calibration of non-physical parameters, e.g., *MAT_054 and *MAT_058 in LS-DYNA [2].
 - Ignore strain rate effects on all stages of deformation e.g., pre-peak, ultimate strength, and post-peak response [3], [4].
 - Most physics-based models were developed for 3D solid elements which is not suitable for full-scale vehicle simulations [5], [6].

Generalized strain rate-dependent stress-strair response of a FRP lamina.

[2] Hallquist, J.O. (2006) LS-DYNA Theory Manual. Livermore Software Technology Corporation (LSTC), Livermore.

[3] Chang, F. K., & Chang, K. Y. (1987). A progressive damage model for laminated composites containing stress concentrations. *Journal of Composite Materials*, *21*(9), 834-855.
[4] Williams, K. V., Vaziri, R., & Poursartip, A. (2003). A physically based continuum damage mechanics model for thin laminated composite structures. *International Journal of Solids and Structures*, *40*(9), 2267-2300.
[5] Tan, W., & Liu, B. (2020). A physically-based constitutive model for the shear-dominated response and strain rate effect of carbon fibre reinforced composites. *Composites Part B: Engineering*, *193*, 108032.
[6] Vogler, M., Rolfes, R., & Camanho, P. P. (2013). Modeling the inelastic deformation and fracture of polymer composites—Part I: Plasticity model. *Mechanics of Materials*, *59*, 50-64.

Recent Research Contributions – UD-NCF Composite

[7] Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response of a unidirectional non-crimp fabric carbon fiber/snap-cure epoxy composite.

[8] Rouf, K., Worswick, M. J., & Montesano, J. (2023). Experimentally verified dual-scale modelling framework for predicting the strain rate-dependent nonlinear anisotropic deformation response of unidirectional non-crimp fabric composites. *Composite Structures*, *303*, 116384.

Introduction

Objective

Develop a lamina-based material constitutive model that is suitable for shell elements, whose properties can be measured through physical or virtual experiments.

Features

- Elastic response
- Inelastic response
- Strain-rate dependency
- In-situ effects
- Failure and fracture response

Assumptions

- The additive split of elastic, inelastic and fracture strain.
- Pre-peak nonlinearity is captured using a plasticity model (causation is not considered).

Constitutive Model Development: Linear Elastic Response

- The theoretical formulation of the deformation model is based on the mathematical framework of invariant theory [6], [9].
- Model derived for plane-normal stress conditions to make it suitable for the shell elements.

Linear elastic formulation

Elastic-free energy density for a transversely isotropic material [6], [9].

$$\psi(\underline{\varepsilon},\underline{A}) = \frac{1}{2}\lambda(tr\underline{\varepsilon})^{2} + \mu_{T}tr(\underline{\varepsilon})^{2} + \alpha(\tilde{a}\underline{\varepsilon}\tilde{a})tr\underline{\varepsilon} + 2(\mu_{L} - \mu_{T})(\tilde{a}\underline{\varepsilon}^{2}\tilde{a}) + \frac{1}{2}\beta(\tilde{a}\underline{\varepsilon}\tilde{a})^{2}$$

$$C = \begin{bmatrix} \lambda + 2\alpha + \beta + 4\mu_L - 2\mu_T & \lambda + \alpha & \lambda + \alpha & 0 & 0 & 0 \\ \lambda + \alpha & \lambda + 2\mu_T & \lambda & 0 & 0 & 0 \\ \lambda + \alpha & \lambda & \lambda + 2\mu_T & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu_L & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu_L & 0 \\ 0 & 0 & 0 & 0 & \mu_T \end{bmatrix}$$

[6] Vogler, M., Rolfes, R., & Camanho, P. P. (2013). Modeling the inelastic deformation and fracture of polymer composites–Part I: plasticity model. Mechanics of Materials, 59, 50-64. [9] Boehler, J. P. (1987). Applications of tensor functions in solid mechanics (Vol. 292). J. P. Boehler (Ed.). New York: Springer.

Constitutive Model Development: Inelastic Response

Yield function

 $f(\underline{\sigma}, \overline{\varepsilon}_p, A) = \alpha_1 I_1 + \alpha_2 I_2 + \alpha_3 I_3 - 1 \le 0$ $\alpha_1 I_1: \text{ For transverse shear yielding}$ $\alpha_2 I_2: \text{ For longitudinal shear yielding}$ $\alpha_3 I_3: \text{ For uniaxial transverse tension and compression yielding}$ $\underline{\sigma} = \underline{\sigma}^{pind} + \underline{\sigma}^{reac}$ $\underline{\sigma}^{reac} = \frac{1}{2} (tr\underline{\sigma} - \tilde{a}\underline{\sigma}\tilde{a})\underline{I} - \frac{1}{2} (tr\underline{\sigma} - 3\tilde{a}\underline{\sigma}\tilde{a})\underline{A}$ $\underline{\sigma}^{pind} = \underline{\sigma} - \frac{1}{2} (tr\underline{\sigma} - \tilde{a}\underline{\sigma}\tilde{a})\underline{I} - \frac{1}{2} (tr\underline{\sigma} - 3\tilde{a}\underline{\sigma}\tilde{a})\underline{A}$

Plastic potential function (For non-associated flow rule) $g(\underline{\sigma}, \underline{A}) = \beta_1 I_1 + \beta_2 I_2 - 1 \le 0$ Plastic potential parameters are based on the shear plastic strains [10].

Equivalent plastic strain

WATERLOO CORG Research Group Forming and Crash Lab

$$\overline{\varepsilon}_p = \sqrt{\frac{1}{2} \left(\underline{\varepsilon}_p : \underline{\varepsilon}_p\right)}$$

Constitutive Model Development: Strain Rate Dependency

Logarithmic strain rate function for transverse compression modulus $S_{T_E}(\dot{\varepsilon}) = \left(1 + C_{T_E} \ln\left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_{ref}}\right)\right), E_{22}(\dot{\varepsilon}) = S_{T_E}(\dot{\varepsilon}) * E_{22}$

Logarithmic strain rate function for shear modulus

$$S_{S_E}(\dot{\varepsilon}) = \left(1 + C_{S_E} \ln\left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_{ref}}\right)\right), G_{12}(\dot{\varepsilon}) = S_{S_E}(\dot{\varepsilon}) * G_{12}$$

Logarithmic strain rate function for transverse compression yield stress $S_{T_Y}(\dot{\varepsilon}) = \left(1 + C_{T_Y} \ln\left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_{ref}}\right)\right), \sigma_{22y}(\dot{\varepsilon}) = S_{T_Y}(\dot{\varepsilon}) * \sigma_{22y}$

Logarithmic strain rate function for shear yield stress $S_{S_Y}(\dot{\varepsilon}) = \left(1 + C_{S_Y} \ln\left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_{ref}}\right)\right), \, \sigma_{12y}(\dot{\varepsilon}) = S_{S_Y}(\dot{\varepsilon}) * \sigma_{12y}$

Constitutive Model Development: Implementation

- The model was derived numerically by the radial return mapping algorithm.
- Written in Fortran and Implemented in LS-DYNA as a user-defined material model (*MAT_43).

Calibration: Inputs for UD-NCF Carbon Fiber/Epoxy Composite

Parameter type	Parameter	Values
Elastic parameters	E ₁₁ [7]	120 GPa
	E ₂₂ [7]	8.6 GPa
	v ₁₂ [11]	0.37
	G ₁₂ [7]	3.4 GPa
	G ₂₃	3.2 GPa
Plastic potential parameter	$\beta_2(\frac{\varepsilon_{12p}}{\varepsilon_{23p}})$ [7]	1
Strain rate parameters	Ė _{ref}	0.000003 ms ⁻¹
	$C_{E_{22}}[7]$	0.04
	$C_{G_{12/23}}[7]$	0.02
	$C_{T_{Y}}[7]$	0.10
	<i>C</i> _{<i>S</i>_{<i>Y</i>} [7]}	0.11
Others	Density [11]	0.00125 g.mm ⁻³

The hardening behavior for the transverse shear is scaled by a factor of 0.95 from the in-plane shear response.

[7] Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response of a unidirectional non-crimp fabric carbon fiber/snap-cure epoxy composite.
 [11] Suratkar, A. P. (2022). Damage in non-crimp fabric carbon fiber reinforced epoxy composites under various mechanical loading conditions. PhD Dissertation, Western University.

Verification – Transverse Tension: UD-NCF Composite

[7] Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response of a unidirectional non-crimp fabric carbon fiber/snap-cure epoxy composite.

ICCM23 - Belfast

Forming and Crash Lab

WATERLOO Composites Research Group

Verification – Transverse Compression: UD-NCF Composite

ICCM23 - Belfast

Forming and Crash Lab

WATERLOO Composites WATERLOO

Verification – In-plane Shear: UD-NCF Composite

[7] Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response of a unidirectional non-crimp fabric carbon fiber/snap-cure epoxy composite.

Forming and Crash Lab

WATERLOO Composites Research Group

Verification – Longitudinal Tension & Compression: UD-NCF Composite

Forming and Crash Lab

WATERLOO Composites Research Group

[11] Suratkar, A. P. (2022). Damage in non-crimp fabric carbon fiber reinforced epoxy composites under various mechanical loading conditions. PhD Dissertation, Western University.

Validation: UD-NCF Composite

WATERLOO Composites Research Group

Stacking Sequence $[\pm 45^{\circ}]_{2s}$

Forming and Crash Lab ICCM23 - Belfast

Verification: IM7-8552 UD Composite

Forming and Crash Lab

WATERLOO Composites WATERLOO

[6] Vogler, M., Rolfes, R., & Camanho, P. P. (2013). Modeling the inelastic deformation and fracture of polymer composites–Part I: plasticity model. Mechanics of Materials, 59, 50-64.

Validation: IM7-8552 UD Composite

[12] Koerber, H., Kuhn, P., Ploeckl, M., Otero, F., Gerbaud, P. W., Rolfes, R., & Camanho, P. P. (2018). Experimental characterization and constitutive modeling of the non-linear stress-strain behavior of unidirectional carbon-epoxy under high strain rate loading. Advanced Modeling and Simulation in Engineering Sciences, 5(1), 1-24.

Conclusions and Next Steps

Conclusions

- The developed material model accurately captured the strain rate-dependent elastic and inelastic response for a UD-NCF composite lamina and has been validated for an angle-ply laminate.
- The material model also accurately captured the response of a UD lamina; however, for off-axis loading there are minor discrepancies at higher applied strains.

Next Steps

- Develop and implement rate-dependent failure initiation criteria in the material model.
- Develop and implement a damage model for predicting the rate-dependent post-peak response.
- Perform characterization experiments to capture the post-peak response at different strain rates.
- Perform validation tests at the component level for different strain rates.

Acknowledgements

Industrial sponsors and the Natural Sciences and Engineering Research Council of Canada (NSERC) for financially supporting this research project

Jose Imbert-Boyd and Mike Bustamante for providing their support during the experiments.

Thanks for your attention

