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Motivation

= Fiber-reinforced plastic (FRP) composites are strong
candidates for energy absorbing applications in
vehicles.

CFRP wet compression
molding

CFRP resin transfer
molding

= Vehicle crashworthiness is typically assessed through
full-scale virtual structural analysis followed by crash
testing.

CFRP-steel hybrid

CE sheet molding
compound

= Computer-aided engineering (CAE) impact simulation
models are developed to simulate a Crash event and Body-in-white of BMW-7 Series highlighting parts made from FRPs. [1]
predict the energy absorption capabilities of a
vehicle structure.

= |n order to accurately predict the impact
performance of composite structures, CAE simulation
models must consider the material strain rate-
dependent behaviour and possible process-induced
defects.

[1] G. Gardiner, "Is the BMW 7 Series the future of auto composites?," 7 10 2016. [Online]. Available https://www.compositesworld.com/articles/is-the-bmw-7-series-the-future-of-autocomposites. [Accessed
2511 2020].
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Motivation

= Limitations with existing material models

* Require calibration of non-physical parameters, e.g.,
*MAT_054 and *MAT_058 in LS-DYNA [2].

* Ignore strain rate effects on all stages of deformation e.g.,
pre-peak, ultimate strength, and post-peak response [3], [4].

* Most physics-based models were developed for 3D solid
elements which is not suitable for full-scale vehicle
simulations [5], [6].

Generalized strain rate-dependent stress-strain
response of a FRP lamina.

[2] Hallquist, J.0. (2006) LS-DYNA Theory Manual. Livermore Software Technology Corporation (LSTC), Livermore.

[3] Chang, F. K., & Chang, K. Y. (1987). A progressive damage model for laminated composites containing stress concentrations. Journal of Composite Materials, 21(9), 834-855.

[4] Williams, K. V., Vaziri, R., & Poursartip, A. (2003). A physically based continuum damage mechanics model for thin laminated composite structures. International Journal of Solids and Structures, 40(9), 2267-2300.
[5] Tan, W., & Liu, B. (2020). A physically-based constitutive model for the shear-dominated response and strain rate effect of carbon fibre reinforced composites. Composites Part B: Engineering, 193, 108032.

[6] Vogler, M., Rolfes, R., & Camanho, P. P. (2013). Modeling the inelastic deformation and fracture of polymer composites—Part I: Plasticity model. Mechanics of Materials, 59, 50-64.
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Recent Research Contributions — UD-NCF Composite
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[7]1 Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response

of a unidirectional non-crimp fabric carbon fiber/snap-cure epoxy composite.
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[8] Rouf, K., Worswick, M. J., & Montesano, J. (2023). Experimentally verified dual-scale
modelling framework for predicting the strain rate-dependent nonlinear anisotropic
deformation response of unidirectional non-crimp fabric composites. Composite
Structures, 303, 116384.




Introduction

Objective “1
Develop a lamina-based material constitutive model that is suitable for shell ,,'?f'*\\
elements, whose properties can be measured through physical or virtual /ow‘“e :
experiments. / :
// \\
Features ,./ :
= Elastic response «u’/ § ’f# ‘ € \‘\
= |nelastic response L/
= Strain-rate dependency .
= |n-situ effects €
= Failure and fracture response Generalized strain rate-dependent stress-strain
response of a FRP lamina.
Assumptions
= The additive split of elastic, inelastic and fracture strain.
= Pre-peak nonlinearity is captured using a plasticity model (causation is not
considered).
I WaTERLCO o's CIR G |55 Forming and Crash Lab ICCM23 - Belfast 5




Constitutive Model Development: Linear Elastic Response

The theoretical formulation of the deformation model is based on the mathematical framework of invariant
theory [6], [9].

Model derived for plane-normal stress conditions to make it suitable for the shell elements.

Linear elastic formulation

Elastic-free energy density for a transversely isotropic material [6], [9].

(e A) = —A(trs) + ,uTtr(e) + a(aea)tre + 2(u; — ,uT)(as a) + ,B(aea

A+2a+p+4u, —2u; A+a At a 0 0 0
At a A+ 2u; A 0 0o O

C = A+a A A+2u; 0 0o O
0 0 0 U 0 0

0 0 0 0 p, O

0 0 0 0 0  Ur.

[6] Vogler, M., Rolfes, R., & Camanho, P. P. (2013). Modeling the inelastic deformation and fracture of polymer composites—Part I: plasticity model. Mechanics of Materials, 59, 50-64.
[9] Boehler, J. P. (1987). Applications of tensor functions in solid mechanics (Vol. 292). J. P. Boehler (Ed.). New York: Springer.
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Constitutive Model Development: Inelastic Response

Yield function E
T-b

f(g;gp:A) = a1l +al, +azl;3-1<0

a4l;: For transverse shear yielding
a,1,: For longitudinal shear yielding l

)
asl3: For uniaxial transverse tension and compression yielding @ @ 022
g = gbind 4 greac L) ‘ - .
— — 1 — 1 Schematic representation of the yield
g7‘eac - E (t?‘g — dgfl)[ — E (trg — gdgd)é surface in o,,-T;, space
, 1 o~ 1 o~ ~
gP= g — ~(tra — do@)l — - (tra — 3dc@)A =
Plastic potential function (For non-associated flow rule) -
gla,A)= Bil; + B, -1<0 f12
Plastic potential parameters are based on the shear plastic strains [10]. -
Equivalent plastic strain ®e
239 @
_ 1 ( ) )
E, = — &L E Schematic representation of the yield
p 2 i surface in 1,5- Ty, Space

[10] Dean, A, Safdar, N., & Rolfes, R. (2019). A co-rotational based anisotropic elasto—plastic model for geometrically non-linear analysis of fibre reinforced polymer composites: formulation and finite Element
implementation. Materials, 12(11), 1816.

Composites

researcn  FOrming and Crash Lab ICCM23 - Belfast /

Group

“waterioo s CRG




Constitutive Model Development: Strain Rate Dependency

Logarithmic strain rate function for transverse compression modulus
STE(é) = (1 + CTE ln( £ )), EZZ(S) = STE(S) * Ezz

Eref

Logarithmic strain rate function for shear modulus

SSE(é) = (1 + CSE ln(g )),Glz(g) = SSE(E) * GlZ

gref

Logarithmic strain rate function for transverse compression yield stress
STY(E) = (1 + CTY In (%)), 0-223/(8) — STy(g) * 0-22_')/

Logarithmic strain rate function for shear yield stress
SSy(é) = (1 + CSy In (i)) 012y(é) = SSy(é) * 012y
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Constitutive Model Development: Implementation

= The model was derived numerically by the radial

return mapping algorithm.

= Written in Fortran and Implemented in LS-DYNA as
a user-defined material model (*MAT_43).
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Start
Given: previous stress state and new
strain increment at gauss-point level

v

Compute strain rate

v

Read elastic properties (elastic moduli and Poisson’s
ratios) and compute stiffness tensor

Compute clastic trial stress tensor

¥

Initialize effective plastic strain and plastic multiplier

¥

Read hardening curves for all modes

¥

Compute yicld function, f

¥

Check yield tolerance, tol

clscl

Compute plastic multiplier

v

Update plastic multiplier and effective plastic strain

if f < tol

v

Update internal variables

Failure: No

Call failure subroutine

Failure: Yes
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Call damage
subroutine




Calibration: Inputs for UD-NCF Carbon Fiber/Epoxy Composite

Parameter type

Elastic

parameters

Plastic potential

parameter

Strain rate

parameters

Others
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Parameter

Euw [7]
Bz [7]

vy, [11]

Gy [7]

Gas

B2 22) [7]
Eref

Cs,, [7]
61505 [7]
Cry [7]

Csy [7]

Density [11]
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The hardening behavior for the transverse shear is scaled by a factor of 0.95 from the in-plane shear
response.

[7] Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response of a
unidirectional non-crimp fabric carbon fiber/snap-cure epoxy composite.

[11] Suratkar, A. P. (2022). Damage in non-crimp fabric carbon fiber reinforced epoxy composites under various mechanical
loading conditions. PhD Dissertation, Western University.
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Verification — Transverse Tension: UD-NCF Composite
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[7] Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response of a unidirectional non-crimp fabric carbon fiber/snap-cure epoxy

composite.
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Verification — Transverse Compression: UD-NCF Composite
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[7] Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response of a unidirectional non-crimp fabric carbon fiber/snap-cure epoxy

composite.
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Verification — In-plane Shear: UD-NCF Composite
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[7] Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response of a unidirectional non-crimp fabric carbon fiber/snap-cure epoxy composite.
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Verification — Longitudinal Tension & Compression: UD-NCF Composite
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[11] Suratkar, A. P. (2022). Damage in non-crimp fabric carbon fiber reinforced epoxy composites under various mechanical loading conditions. PhD Dissertation, Western University.
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~

Validation: UD-NCF Composite
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Verification: IM7-8552 UD Composite

Group
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[6] Vogler, M., Rolfes, R., & Camanho, P. P. (2013). Modeling the inelastic deformation and fracture of polymer composites—Part I: plasticity model. Mechanics of Materials, 59, 50-64.
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Validation: IM7-8552 UD Composite
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[12] Koerber, H., Kuhn, P., Ploeckl, M., Otero, F., Gerbaud, P. W., Rolfes, R., & Camanho, P. P. (2018). Experimental characterization and constitutive modeling of the non-linear stress—strain behavior of

unidirectional carbon—epoxy under high strain rate loading. Advanced Modeling and Simulation in Engineering Sciences, 5(1), 1-24.
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Conclusions and Next Steps

= Conclusions
* The developed material model accurately captured the strain rate-dependent elastic and inelastic response
for a UD-NCF composite lamina and has been validated for an angle-ply laminate.
* The material model also accurately captured the response of a UD lamina; however, for off-axis loading
there are minor discrepancies at higher applied strains.

= Next Steps
* Develop and implement rate-dependent failure initiation criteria in the material model.
* Develop and implement a damage model for predicting the rate-dependent post-peak response.
* Perform characterization experiments to capture the post-peak response at different strain rates.
e Perform validation tests at the component level for different strain rates.

ites
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