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Body-in-white of BMW-7 Series highlighting parts made from FRPs. [1]

▪ Fiber-reinforced plastic (FRP) composites are strong 
candidates for energy absorbing applications in 
vehicles.

▪ Vehicle crashworthiness is typically assessed through 
full-scale virtual structural analysis followed by crash 
testing.

▪ Computer-aided engineering (CAE) impact simulation 
models are developed to simulate a crash event and 
predict the energy absorption capabilities of a 
vehicle structure.

▪ In order to accurately predict the impact 
performance of composite structures, CAE simulation 
models must consider the material strain rate-
dependent behaviour and possible process-induced 
defects.  

[1] G. Gardiner, "Is the BMW 7 Series the future of auto composites?," 7 10 2016. [Online]. Available https://www.compositesworld.com/articles/is-the-bmw-7-series-the-future-of-autocomposites. [Accessed  
25 11 2020].
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▪ Limitations with existing material models

• Require calibration of non-physical parameters, e.g., 
*MAT_054 and *MAT_058 in LS-DYNA [2].

• Ignore strain rate effects on all stages of deformation e.g., 
pre-peak, ultimate strength, and post-peak response [3], [4].

• Most physics-based models were developed for 3D solid 
elements which is not suitable for full-scale vehicle 
simulations [5], [6].

Generalized strain rate-dependent stress-strain 
response of a FRP lamina.

[2] Hallquist, J.O. (2006) LS-DYNA Theory Manual. Livermore Software Technology Corporation (LSTC), Livermore.
[3] Chang, F. K., & Chang, K. Y. (1987). A progressive damage model for laminated composites containing stress concentrations. Journal of Composite Materials, 21(9), 834-855.
[4] Williams, K. V., Vaziri, R., & Poursartip, A. (2003). A physically based continuum damage mechanics model for thin laminated composite structures. International Journal of Solids and Structures, 40(9), 2267-2300.
[5] Tan, W., & Liu, B. (2020). A physically-based constitutive model for the shear-dominated response and strain rate effect of carbon fibre reinforced composites. Composites Part B: Engineering, 193, 108032.
[6] Vogler, M., Rolfes, R., & Camanho, P. P. (2013). Modeling the inelastic deformation and fracture of polymer composites–Part I: Plasticity model. Mechanics of Materials, 59, 50-64.
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[7] Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response 
of a unidirectional non-crimp fabric carbon fiber/snap-cure epoxy composite.

[8] Rouf, K., Worswick, M. J., & Montesano, J. (2023). Experimentally verified dual-scale 
modelling framework for predicting the strain rate-dependent nonlinear anisotropic 
deformation response of unidirectional non-crimp fabric composites. Composite 
Structures, 303, 116384.
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Objective
Develop a lamina-based material constitutive model that is suitable for shell 
elements, whose properties can be measured through physical or virtual 
experiments.  

Features
▪ Elastic response 
▪ Inelastic response 
▪ Strain-rate dependency
▪ In-situ effects
▪ Failure and fracture response

Assumptions
▪ The additive split of elastic, inelastic and fracture strain.
▪ Pre-peak nonlinearity is captured using a plasticity model (causation is not 

considered).

Generalized strain rate-dependent stress-strain 
response of a FRP lamina.
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Constitutive Model Development: Linear Elastic Response
▪ The theoretical formulation of the deformation model is based on the mathematical framework of invariant 

theory [6], [9]. 
▪ Model derived for plane-normal stress conditions to make it suitable for the shell elements.  

Linear elastic formulation

Elastic-free energy density for a transversely isotropic material [6], [9].
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[6] Vogler, M., Rolfes, R., & Camanho, P. P. (2013). Modeling the inelastic deformation and fracture of polymer composites–Part I: plasticity model. Mechanics of Materials, 59, 50-64.
[9] Boehler, J. P. (1987). Applications of tensor functions in solid mechanics (Vol. 292). J. P. Boehler (Ed.). New York: Springer.
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𝛼1𝐼1: For transverse shear yielding
𝛼2𝐼2: For longitudinal shear yielding
𝛼3𝐼3: For uniaxial transverse tension and compression yielding

Yield function

f(𝜎, 𝜀𝑝, 𝐴) =  𝛼1𝐼1 + 𝛼2𝐼2 + 𝛼3𝐼3 - 1 ≤ 0 

𝜎 = 𝜎𝑝𝑖𝑛𝑑 + 𝜎𝑟𝑒𝑎𝑐

𝜎𝑟𝑒𝑎𝑐 = 
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Plastic potential function (For non-associated flow rule)
g(𝜎, 𝐴) =  𝛽1𝐼1 + 𝛽2𝐼2 - 1 ≤ 0
Plastic potential parameters are based on the shear plastic strains [10].

Equivalent plastic strain

𝜀𝑝 =
1

2
𝜀𝑝: 𝜀𝑝

Constitutive Model Development: Inelastic Response

[10] Dean, A., Safdar, N., & Rolfes, R. (2019). A co-rotational based anisotropic elasto–plastic model for geometrically non-linear analysis of fibre reinforced polymer composites: formulation and finite Element 
implementation. Materials, 12(11), 1816.

Schematic representation of the yield 
surface in σ22- τ12 space

Schematic representation of the yield 
surface in τ23- τ12 space
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Constitutive Model Development: Strain Rate Dependency

Logarithmic strain rate function for transverse compression modulus

𝑆𝑇𝐸 ሶ𝜀 = 1 + 𝐶𝑇𝐸 ln
ሶ𝜀

ሶ𝜀𝑟𝑒𝑓
, 𝐸22 ሶ𝜀 = 𝑆𝑇𝐸 ሶ𝜀 ∗ 𝐸22

Logarithmic strain rate function for shear modulus

𝑆𝑆𝐸 ሶ𝜀 = 1 + 𝐶𝑆𝐸 ln
ሶ𝜀

ሶ𝜀𝑟𝑒𝑓
, 𝐺12 ሶ𝜀 = 𝑆𝑆𝐸 ሶ𝜀 ∗ 𝐺12

Logarithmic strain rate function for transverse compression yield stress

𝑆𝑇𝑌( ሶ𝜀) = 1 + 𝐶𝑇𝑌 ln
ሶ𝜀

ሶ𝜀𝑟𝑒𝑓
, σ22𝑦 ሶ𝜀 = 𝑆𝑇𝑌 ሶ𝜀 ∗ σ22𝑦

Logarithmic strain rate function for shear yield stress

𝑆𝑆𝑌( ሶ𝜀) = 1 + 𝐶𝑆𝑌 ln
ሶ𝜀

ሶ𝜀𝑟𝑒𝑓
, σ12𝑦 ሶ𝜀 = 𝑆𝑆𝑌 ሶ𝜀 ∗ σ12𝑦
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Constitutive Model Development: Implementation
▪ The model was derived numerically by the radial 

return mapping algorithm. 

▪ Written in Fortran and Implemented in LS-DYNA as 
a user-defined material model (*MAT_43).  
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Calibration: Inputs for UD-NCF Carbon Fiber/Epoxy Composite

The hardening behavior for the transverse shear is scaled by a factor of 0.95 from the in-plane shear 
response.

Parameter type Parameter Values

Elastic 

parameters

E11 [7] 120 GPa

E22 [7] 8.6 GPa

ʋ12  [11] 0.37

G12 [7] 3.4 GPa

G23 3.2 GPa

Plastic potential 

parameter
β2 (

𝜀12𝑝

𝜀23𝑝
) [7] 1

Strain rate 

parameters

ሶ𝜀𝑟𝑒𝑓 0.000003 ms-1

𝐶𝐸22 [7] 0.04

𝐶𝐺12/23 [7] 0.02

𝐶𝑇𝑌 [7] 0.10

𝐶𝑆𝑌 [7] 0.11

Others Density [11] 0.00125 g.mm-3
[7] Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response of a 
unidirectional non-crimp fabric carbon fiber/snap-cure epoxy composite.
[11] Suratkar, A. P. (2022). Damage in non-crimp fabric carbon fiber reinforced epoxy composites under various mechanical 
loading conditions. PhD Dissertation, Western University.

Hardening curve for the in-plane shear mode Hardening curve for transverse compression mode
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Verification – Transverse Tension: UD-NCF Composite

1

2

[7] Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response of a unidirectional non-crimp fabric carbon fiber/snap-cure epoxy 
composite.

Strain rate: 0.1 s-1 Strain rate: 16 s-1 Strain rate: 126 s-1
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Verification – Transverse Compression: UD-NCF Composite

[7] Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response of a unidirectional non-crimp fabric carbon fiber/snap-cure epoxy 
composite.

1

2

Strain rate: 0.003 s-1 Strain rate: 1.4 s-1 Strain rate: 260 s-1
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Verification – In-plane Shear: UD-NCF Composite

[7] Rouf, K., Worswick, M., & Montesano, J. (In-preparation). Effect of strain rate on the in-plane mechanical response of a unidirectional non-crimp fabric carbon fiber/snap-cure epoxy composite.

1

2

Strain rate: 0.003 s-1 Strain rate: 1.8 s-1 Strain rate: 315 s-1
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Verification – Longitudinal Tension & Compression: UD-NCF Composite

1

2

1

2

[11] Suratkar, A. P. (2022). Damage in non-crimp fabric carbon fiber reinforced epoxy composites under various mechanical loading conditions. PhD Dissertation, Western University.

Strain rate: 0.0003 s-1

Strain rate: 0.0003 s-1
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Validation: UD-NCF Composite

1

2

Stacking Sequence [±45o]2s

Strain-rate: 315 s-1Strain-rate: 0.003 s-1
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Verification: IM7-8552 UD Composite

In-plane shear Transverse compressionTransverse shear

[6] Vogler, M., Rolfes, R., & Camanho, P. P. (2013). Modeling the inelastic deformation and fracture of polymer composites–Part I: plasticity model. Mechanics of Materials, 59, 50-64.

Strain-rate: 4*10-4 s-1 Strain-rate: 4*10-4 s-1 Strain-rate: 4*10-4 s-1
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Validation: IM7-8552 UD Composite
15 degree off-axis 30 degree off-axis 45 degree off-axis

60 degree off-axis 75 degree off-axis 90 degree off-axis

[12] Koerber, H., Kuhn, P., Ploeckl, M., Otero, F., Gerbaud, P. W., Rolfes, R., & Camanho, P. P. (2018). Experimental characterization and constitutive modeling of the non-linear stress–strain behavior of 
unidirectional carbon–epoxy under high strain rate loading. Advanced Modeling and Simulation in Engineering Sciences, 5(1), 1-24.
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Conclusions and Next Steps
▪ Conclusions

• The developed material model accurately captured the strain rate-dependent elastic and inelastic response 
for a UD-NCF composite lamina and has been validated for an angle-ply laminate.

• The material model also accurately captured the response of a UD lamina; however, for off-axis loading 
there are minor discrepancies at higher applied strains.

▪ Next Steps
• Develop and implement rate-dependent failure initiation criteria in the material model.
• Develop and implement a damage model for predicting the rate-dependent post-peak response.
• Perform characterization experiments to capture the post-peak response at different strain rates.
• Perform validation tests at the component level for different strain rates.
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Thanks for your attention
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